1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025:10.1038/s41568-024-00781-9. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Liu OX, Lin LB, Bunk S, Chew T, Wu SK, Motegi F, Low BC. A ZO-2 scaffolding mechanism regulates the Hippo signalling pathway. FEBS J 2024. [PMID: 39462647 DOI: 10.1111/febs.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Contact inhibition of proliferation is a critical cell density control mechanism governed by the Hippo signalling pathway. The biochemical signalling underlying cell density-dependent cues regulating Hippo signalling and its downstream effectors, YAP, remains poorly understood. Here, we reveal that the tight junction protein ZO-2 is required for the contact-mediated inhibition of proliferation. We additionally determined that the well-established molecular players of this process, namely Hippo kinase LATS1 and YAP, are regulated by ZO-2 and that the scaffolding function of ZO-2 promotes the interaction with and phosphorylation of YAP by LATS1. Mechanistically, YAP is phosphorylated when ZO-2 brings LATS1 and YAP together via its SH3 and PDZ domains, respectively, subsequently leading to the cytoplasmic retention and inactivation of YAP. In conclusion, we demonstrate that ZO-2 maintains Hippo signalling pathway activation by promoting the stability of LATS1 to inactivate YAP.
Collapse
Affiliation(s)
- Olivia Xuan Liu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Soumya Bunk
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tiweng Chew
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Selwin K Wu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fumio Motegi
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life-Sciences Laboratory, Singapore, Singapore
- Institute for Genetic Medicine, Hokkaido University, Japan
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS College, National University of Singapore, Singapore
| |
Collapse
|
3
|
Moussa AT, Cosenza MR, Wohlfromm T, Brobeil K, Hill A, Patrizi A, Müller-Decker K, Holland-Letz T, Jauch A, Kraft B, Krämer A. STIL overexpression shortens lifespan and reduces tumor formation in mice. PLoS Genet 2024; 20:e1011460. [PMID: 39466849 PMCID: PMC11542878 DOI: 10.1371/journal.pgen.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Centrosomes are the major microtubule organizing centers of animal cells. Supernumerary centrosomes are a common feature of human tumors and associated with karyotype abnormalities and aggressive disease, but whether they are cause or consequence of cancer remains controversial. Here, we analyzed the consequences of centrosome amplification by generating transgenic mice in which centrosome numbers can be increased by overexpression of the structural centrosome protein STIL. We show that STIL overexpression induces centrosome amplification and aneuploidy, leading to senescence, apoptosis, and impaired proliferation in mouse embryonic fibroblasts, and microcephaly with increased perinatal lethality and shortened lifespan in mice. Importantly, both overall tumor formation in mice with constitutive, global STIL overexpression and chemical skin carcinogenesis in animals with inducible, skin-specific STIL overexpression were reduced, an effect that was not rescued by concomitant interference with p53 function. These results suggest that supernumerary centrosomes impair proliferation in vitro as well as in vivo, resulting in reduced lifespan and delayed spontaneous as well as carcinogen-induced tumor formation.
Collapse
Affiliation(s)
- Amira-Talaat Moussa
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Al Sharkia, Egypt
| | - Marco R. Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy Wohlfromm
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Katharina Brobeil
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony Hill
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Tighanimine K, Nabuco Leva Ferreira Freitas JA, Nemazanyy I, Bankolé A, Benarroch-Popivker D, Brodesser S, Doré G, Robinson L, Benit P, Ladraa S, Saada YB, Friguet B, Bertolino P, Bernard D, Canaud G, Rustin P, Gilson E, Bischof O, Fumagalli S, Pende M. A homoeostatic switch causing glycerol-3-phosphate and phosphoethanolamine accumulation triggers senescence by rewiring lipid metabolism. Nat Metab 2024; 6:323-342. [PMID: 38409325 PMCID: PMC10896726 DOI: 10.1038/s42255-023-00972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
| | - José Américo Nabuco Leva Ferreira Freitas
- IMRB, Mondor Institute for Biomedical Research, Inserm U955, Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, Créteil, France
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alexia Bankolé
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
| | | | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Gregory Doré
- Institut Pasteur, Plasmodium RNA Biology Unit, Paris, France
| | - Lucas Robinson
- Institut Pasteur, Department of Cell Biology and Infection, INSERM, Paris, France
| | - Paule Benit
- Université Paris Cité, Inserm U1141, NeuroDiderot, Paris, France
| | - Sophia Ladraa
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
| | - Yara Bou Saada
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, France
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, France
| | - Philippe Bertolino
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Bernard
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Guillaume Canaud
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
- Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Pierre Rustin
- Université Paris Cité, Inserm U1141, NeuroDiderot, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, Inserm, CNRS, Institut for Research on Cancer and Aging (IRCAN), Nice, France
- Department of Medical Genetics, University-Hospital (CHU) of Nice, Nice, France
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, Inserm U955, Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, Créteil, France.
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France.
| | - Mario Pende
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
5
|
Wu SK, Ariffin J, Tay SC, Picone R. The variant senescence-associated secretory phenotype induced by centrosome amplification constitutes a pathway that activates hypoxia-inducible factor-1α. Aging Cell 2023; 22:e13766. [PMID: 36660875 PMCID: PMC10014068 DOI: 10.1111/acel.13766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023] Open
Abstract
The senescence-associated secretory phenotype (SASP) can promote paracrine invasion while suppressing tumour growth, thus generating complex phenotypic outcomes. Likewise, centrosome amplification can induce proliferation arrest yet also facilitate tumour invasion. However, the eventual fate of cells with centrosome amplification remains elusive. Here, we report that centrosome amplification induces a variant of SASP, which constitutes a pathway activating paracrine invasion. The centrosome amplification-induced SASP is non-canonical as it lacks the archetypal detectable DNA damage and prominent NF-κB activation, but involves Rac activation and production of reactive oxygen species. Consequently, it induces hypoxia-inducible factor 1α and associated genes, including pro-migratory factors such as ANGPTL4. Of note, cellular senescence can either induce tumourigenesis through paracrine signalling or conversely suppress tumourigenesis through p53 induction. By analogy, centrosome amplification-induced SASP may therefore be one reason why extra centrosomes promote malignancy in some experimental models but are neutral in others.
Collapse
Affiliation(s)
- Selwin K. Wu
- Department of Cell BiologyHarvard Medical SchoolMassachusettsBostonUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteMassachusettsBostonUSA
| | - Juliana Ariffin
- Department of SurgeryCancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMassachusettsBostonUSA
- Present address:
Mechanobiology Institute & Department of Biological SciencesNational University of SingaporeSingapore
| | - Shu Chian Tay
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Remigio Picone
- Department of Cell BiologyHarvard Medical SchoolMassachusettsBostonUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteMassachusettsBostonUSA
- Present address:
Mechanobiology Institute & Department of Biological SciencesNational University of SingaporeSingapore
| |
Collapse
|
6
|
Huang CBX, Tu TY. Recent advances in vascularized tumor-on-a-chip. Front Oncol 2023; 13:1150332. [PMID: 37064144 PMCID: PMC10099572 DOI: 10.3389/fonc.2023.1150332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
The vasculature plays a critical role in cancer progression and metastasis, representing a pivotal aspect in the creation of cancer models. In recent years, the emergence of organ-on-a-chip technology has proven to be a robust tool, capable of replicating in vivo conditions with exceptional spatiotemporal resolution, making it a significant asset in cancer research. This review delves into the latest developments in 3D microfluidic vascularized tumor models and their applications in vitro, focusing on heterotypic cellular interactions, the mechanisms of metastasis, and therapeutic screening. Additionally, the review examines the benefits and drawbacks of these models, as well as the future prospects for their advancement.
Collapse
Affiliation(s)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ting-Yuan Tu,
| |
Collapse
|