1
|
Schultz SA, Liu L, Schultz AP, Fitzpatrick CD, Levin R, Bellier JP, Shirzadi Z, Joseph-Mathurin N, Chen CD, Benzinger TLS, Day GS, Farlow MR, Gordon BA, Hassenstab JJ, Jack CR, Jucker M, Karch CM, Lee JH, Levin J, Perrin RJ, Schofield PR, Xiong C, Johnson KA, McDade E, Bateman RJ, Sperling RA, Selkoe DJ, Chhatwal JP. γ-Secretase activity, clinical features, and biomarkers of autosomal dominant Alzheimer's disease: cross-sectional and longitudinal analysis of the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol 2024; 23:913-924. [PMID: 39074479 DOI: 10.1016/s1474-4422(24)00236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Genetic variants that cause autosomal dominant Alzheimer's disease are highly penetrant but vary substantially regarding age at symptom onset (AAO), rates of cognitive decline, and biomarker changes. Most pathogenic variants that cause autosomal dominant Alzheimer's disease are in presenilin 1 (PSEN1), which encodes the catalytic core of γ-secretase, an enzyme complex that is crucial in production of amyloid β. We aimed to investigate whether the heterogeneity in AAO and biomarker trajectories in carriers of PSEN1 pathogenic variants could be predicted on the basis of the effects of individual PSEN1 variants on γ-secretase activity and amyloid β production. METHODS For this cross-sectional and longitudinal analysis, we used data from participants enrolled in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) via the DIAN-OBS data freeze version 15 (data collected between Feb 29, 2008, and June 30, 2020). The data freeze included data from 20 study sites in research institutions, universities, hospitals, and clinics across Europe, North and South America, Asia, and Oceania. We included individuals with PSEN1 pathogenic variants for whom relevant genetic, clinical, imaging, and CSF data were available. PSEN1 pathogenic variants were characterised via genetically modified PSEN1 and PSEN2 double-knockout human embryonic kidney 293T cells and immunoassays for Aβ37, Aβ38, Aβ40, Aβ42, and Aβ43. A summary measure of γ-secretase activity (γ-secretase composite [GSC]) was calculated for each variant and compared with clinical history-derived AAO using correlation analyses. We used linear mixed-effect models to assess associations between GSC scores and multimodal-biomarker and clinical data from DIAN-OBS. We used separate models to assess associations with Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini-Mental State Examination (MMSE), and Wechsler Memory Scale-Revised (WMS-R) Logical Memory Delayed Recall, [11C]Pittsburgh compound B (PiB)-PET and brain glucose metabolism using [18F] fluorodeoxyglucose (FDG)-PET, CSF Aβ42-to-Aβ40 ratio (Aβ42/40), CSF log10 (phosphorylated tau 181), CSF log10 (phosphorylated tau 217), and MRI-based hippocampal volume. FINDINGS Data were included from 190 people carrying PSEN1 pathogenic variants, among whom median age was 39·0 years (IQR 32·0 to 48·0) and AAO was 44·5 years (40·6 to 51·4). 109 (57%) of 190 carriers were female and 81 (43%) were male. Lower GSC values (ie, lower γ-secretase activity than wild-type PSEN1) were associated with earlier AAO (r=0·58; p<0·0001). GSC was associated with MMSE (β=0·08, SE 0·03; p=0·0043), CDR-SB (-0·05, 0·02; p=0·0027), and WMS-R Logical Memory Delayed Recall scores (0·09, 0·02; p=0·0006). Lower GSC values were associated with faster increase in PiB-PET signal (p=0·0054), more rapid decreases in hippocampal volume (4·19, 0·77; p<0·0001), MMSE (0·02, 0·01; p=0·0020), and WMS-R Logical Memory Delayed Recall (0·004, 0·001; p=0·0003). INTERPRETATION Our findings suggest that clinical heterogeneity in people with autosomal dominant Alzheimer's disease can be at least partly explained by different effects of PSEN1 variants on γ-secretase activity and amyloid β production. They support targeting γ-secretase as a therapeutic approach and suggest that cell-based models could be used to improve prediction of symptom onset. FUNDING US National Institute on Aging, Alzheimer's Association, German Center for Neurodegenerative Diseases, Raul Carrea Institute for Neurological Research, Japan Agency for Medical Research and Development, Korea Health Industry Development Institute, South Korean Ministry of Health and Welfare, South Korean Ministry of Science and ICT, and Spanish Institute of Health Carlos III.
Collapse
Affiliation(s)
- Stephanie A Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Lei Liu
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Colleen D Fitzpatrick
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Raina Levin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Jean-Pierre Bellier
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Charles D Chen
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | | | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Johannes Levin
- German Center for Neurodegenerative Diseases, Munich, Germany; Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Richard J Perrin
- Department of Psychiatry, Washington University, St Louis, MO, USA; Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University, St Louis, MO, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Eric McDade
- Department of Neurology, Washington University, St Louis, MO, USA
| | | | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dennis J Selkoe
- Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA.
| |
Collapse
|
3
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|