1
|
Hong Y, Zhou J, Yu W, Iloputaife I, Bao D, Zhou Y, Manor B, Lipsitz LA, Jor'dan AJ. The Physiologic Complexity of Prefrontal Oxygenation Dynamics Is Associated With Age and Executive Function: An Exploratory Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae151. [PMID: 38853485 PMCID: PMC11372708 DOI: 10.1093/gerona/glae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The hemodynamics of prefrontal cortex (PFC) oxygenation are regulated by numerous processes operating over multiple temporal scales, producing complex patterns in its output fluctuations. Age may alter this multiscale regulation of PFC oxygenation, leading to diminished physiologic complexity of this important regulatory process. We aimed to characterize the effects of age on such complexity and its relationship to performance of an executive n-back task. METHODS Twenty-four younger (aged 28 ± 3 years) and 27 older (aged 78 ± 6 years) adults completed this study. Continuous oxygenation (HbO2) and deoxygenation (HHb) signals of PFC were recorded using functional near-infrared spectroscopy (fNIRS) while participants stood and watched a blank screen (blank), clicked a mouse when an X appeared (IdX), or when a letter was repeated from "2-back" in a sequence shown on a screen (2-back). We used multiscale entropy to quantify the HbO2 and HHb complexity of fNIRS signals. RESULTS Older adults exhibited lower HbO2 and HHb complexity compared to younger adults, regardless of task (p = .0005-.002). Both groups exhibited greater complexity during the IdX and 2-back than blank task (p = .02-.04). Across all participants, those with greater HbO2 and/or HHb complexity during the blank task exhibited faster IdX and 2-back reaction time (β = -0.56 to -0.6, p = .009-.02). Those demonstrating greater increase in HbO2 and/or HHb complexity from IdX to 2-back task had lower percent increase in reaction time from IdX to 2-back task (β = -0.41 to -0.37, p = .005-.01). CONCLUSIONS The complexity of fNIRS-measured PFC oxygenation fluctuations may capture the influence of aging on the regulation of prefrontal hemodynamics involved in executive-function-based task performance.
Collapse
Affiliation(s)
- Yinglu Hong
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Wanting Yu
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, USA
| | - Ikechukwu Iloputaife
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, USA
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yuncong Zhou
- School of Education, Beijing Sport University, Beijing, China
| | - Brad Manor
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lewis A Lipsitz
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Azizah J Jor'dan
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Jiang X, Tan H, Ren H, Zhou H, Chen J, Wang Z, Guo Y, Zhou J. Clinical and physiological risk factors contributing to the restricted mobility in older adults: a longitudinal analysis. BMC Geriatr 2024; 24:630. [PMID: 39048949 PMCID: PMC11267748 DOI: 10.1186/s12877-024-05230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Mobility limitations (e.g., using wheelchair) have been closely linked to diminished functional independence and quality of life in older adults. The regulation of mobility is pertaining to multiple neurophysiologic and sociodemographic factors. We here aimed to characterize the relationships of these factors to the risk of restricted mobility in older adults. METHODS In this longitudinal study, 668 older adults with intact mobility at baseline completed the baseline assessments of clinical characteristics, cognitive function, sleep quality, activities of daily living (ADL), walking performance, beat-to-beat blood pressure, and structural MRI of the brain. Then 506 of them (mean age = 70.7 ± 7.5 years) responded to the follow-up interview on the mobility limitation (as defined by if using wheelchair, cane, or walkers, or being disabled and lying on the bed) after 18 ± 3.5 months. Logistic regression analyses were performed to examine the relationships between the baseline characteristics and the follow-up mobility restriction. RESULTS At baseline, compared to intact-mobility group (n = 475), restricted-mobility group (n = 31) were older, with lower score of ADL and the Montreal Cognitive Assessment (MoCA), greater score of Pittsburgh Sleep Quality Index (PSQI), poorer cardio- and cerebral vascular function, and slower walking speeds (ps < 0.05). The logistic regression analysis demonstrated that participants who were with history of falls, uncontrolled-hypertension, and/or greater Fazekas scale (odds ratios (ORs):1.3 ~ 13.9, 95% confidence intervals (CIs) = 1.1 ~ 328.2), walked slower, and/or with lower ADL score (ORs: 0.0026 ~ 0.9; 95%CI: 0.0001 ~ 0.99) at baseline, would have significantly greater risk of restricted mobility (p < 0.05; VIFs = 1.2 ~ 1.9). CONCLUSIONS These findings provide novel profile of potential risk factors, including vascular characteristics, psycho-cognitive and motor performance, for the development of restricted mobility in near future in older adults, ultimately helping the design of appropriate clinical and rehabilitative programs for mobility in this population.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, China.
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Huiying Tan
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Huixia Ren
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huiting Zhou
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingmei Chen
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhen Wang
- Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi Guo
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Department of Neurology, Shenzhen People's Hospital, Shenzhen, Guangdong, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Junhong Zhou
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Roslindale, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Cheng Y, Lin L, Huang P, Zhang J, Wang Y, Pan X. Hypotension with neurovascular changes and cognitive dysfunction: An epidemiological, pathobiological, and treatment review. Chin Med J (Engl) 2024:00029330-990000000-01080. [PMID: 38785189 DOI: 10.1097/cm9.0000000000003103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Hypotension is a leading cause of age-related cognitive impairment. The available literature evidences that vascular factors are associated with dementia and that hypotension alters cerebral perfusion flow and can aggravate the neurodegeneration of Alzheimer's disease (AD). Despite the discovery of biomarkers and the recent progress made in neurovascular biology, epidemiology, and brain imaging, some key issues remain largely unresolved: the potential mechanisms underlying the neural deterioration observed in AD, the effect of cerebrovascular alterations on cognitive deficits, and the positive effects of hypotension treatment on cognition. Therefore, further well-designed studies are needed to unravel the potential association between hypotension and cognitive dysfunction and reveal the potential benefits of hypotension treatment for AD patients. Here, we review the current epidemiological, pathobiological, and treatment-related literature on neurovascular changes and hypotension-related cognitive dysfunction and highlight the unsettled but imminent issues that warrant future research endeavors.
Collapse
Affiliation(s)
- Yingzhe Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Lin Lin
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Peilin Huang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Center for Geriatrics, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Yanping Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
4
|
Jiang X, Mang X, Zhou H, Chen J, Tan H, Ren H, Huang B, Zhong L, Lipsitz LA, Manor B, Guo Y, Zhou J. The physiologic complexity of beat-to-beat blood pressure is associated with age-related alterations in blood pressure regulation. Aging Cell 2024; 23:e13943. [PMID: 37615223 PMCID: PMC10776119 DOI: 10.1111/acel.13943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023] Open
Abstract
The fluctuations in resting-state beat-to-beat blood pressure (BP) are physiologically complex, and the degree of such BP complexity is believed to reflect the multiscale regulation of this critical physiologic process. Hypertension (HTN), one common age-related condition, is associated with altered BP regulation and diminished system responsiveness to perturbations such as orthostatic change. We thus aimed to characterize the impact of HTN on resting-state BP complexity, as well as the relationship between BP complexity and both adaptive capacity and underlying vascular characteristics. We recruited 392 participants (age: 60-91 years), including 144 that were normotensive and 248 with HTN (140 controlled- and 108 uncontrolled-HTN). Participants completed a 10-min continuous finger BP recording during supine rest, then underwent measures of lying-to-standing BP change, arterial stiffness (i.e., brachial-ankle pulse wave velocity), and endothelial function (i.e., flow-mediated vasodilation). The complexity of supine beat-to-beat systolic (SBP) and diastolic (DBP) BP was quantified using multiscale entropy. Thirty participants with HTN (16 controlled-HTN and 14 uncontrolled-HTN) exhibited orthostatic hypotension. SBP and DBP complexity was greatest in normotensive participants, lower in those with controlled-HTN, and lowest in those in uncontrolled-HTN (p < 0.0005). Lower SBP and DBP complexity correlated with greater lying-to-standing decrease in SBP and DBP level (β = -0.33 to -0.19, p < 0.01), greater arterial stiffness (β = -0.35 to -0.18, p < 0.01), and worse endothelial function (β = 0.17-0.22, p < 0.01), both across all participants and within the control- and uncontrolled-HTN groups. These results suggest that in older adults, BP complexity may capture the integrity of multiple interacting physiologic mechanisms that regulate BP and are important to cardiovascular health.
Collapse
Affiliation(s)
- Xin Jiang
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Xiaoying Mang
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Huiting Zhou
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Jingmei Chen
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Huiying Tan
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
| | - Huixia Ren
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Baofeng Huang
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Lilian Zhong
- Department of GeriatricsShenzhen People's HospitalShenzhenChina
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Lewis A. Lipsitz
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeBostonMassachusettsUSA
- Division of GerontologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeBostonMassachusettsUSA
- Division of GerontologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Yi Guo
- The Second Clinical Medical CollegeJinan UniversityShenzhenChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
- Department of NeurologyShenzhen People's HospitalShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeBostonMassachusettsUSA
- Division of GerontologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Montano M, Oursler KK, Marconi VC. Healthy aging: Linking causal mechanisms with holistic outcomes. Aging Cell 2024; 23:e14065. [PMID: 38108552 PMCID: PMC10776108 DOI: 10.1111/acel.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Identifying and understanding the impact of differing exposures over the lifecourse necessitates contextualizing different levels of influence ranging from genetics, epigenetics, geography, and psychosocial networks.
Collapse
Affiliation(s)
- Monty Montano
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Krisann K. Oursler
- Department of MedicineVirginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Salem Veterans Affairs Health Care SystemSalemVirginiaUSA
| | - Vincent C. Marconi
- Atlanta Veterans Affairs Health Care SystemDecaturGeorgiaUSA
- Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
- Division of Infectious DiseasesEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Vaccine CenterAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Hong Y, Bao D, Manor B, Zhou Y, Zhou J. Effects of endurance exercise on physiologic complexity of the hemodynamics in prefrontal cortex. NEUROPHOTONICS 2024; 11:015009. [PMID: 38515930 PMCID: PMC10956706 DOI: 10.1117/1.nph.11.1.015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Significance Prefrontal cortex (PFC) hemodynamics are regulated by numerous underlying neurophysiological components over multiple temporal scales. The pattern of output signals, such as functional near-infrared spectroscopy fluctuations (i.e., fNIRS), is thus complex. We demonstrate first-of-its-kind evidence that this fNIRS complexity is a marker that captures the influence of endurance capacity and the effects of hydrogen gas (H 2 ) on PFC regulation. Aim We aim to explore the effects of different physical loads of exercise as well as the intaking of hydrogen gas on the fNIRS complexity of the PFC. Approach Twenty-four healthy young men completed endurance cycling exercise from 0 (i.e., baseline) to 100% of their physical loads after intaking 20 min of either H 2 or placebo gas (i.e., control) on each of two separate visits. The fNIRS measuring the PFC hemodynamics and heart rate (HR) was continuously recorded throughout the exercise. The fNIRS complexity was quantified using multiscale entropy. Results The fNIRS complexity was significantly greater in the conditions from 25% to 100% of the physical load (p < 0.0005 ) compared with the baseline and after intaking H 2 before exercise; this increase of fNIRS complexity was significantly greater compared with the control (p = 0.001 ∼ 0.01 ). At the baseline, participants with a greater fNIRS complexity had a lower HR (β = - 0.35 ∼ - 0.33 , p = 0.008 ∼ 0.02 ). Those with a greater increase of complexity had a lower increase of the HR (β = - 0.30 ∼ - 0.28 , p = 0.001 ∼ 0.002 ) during exercise. Conclusions These observations suggest that fNIRS complexity would be a marker that captures the adaptive capacity of PFC to endurance exercise and to the effects of interventions on PFC hemodynamics.
Collapse
Affiliation(s)
- Yinglu Hong
- Beijing Sport University, School of Sport Medicine and Physical Therapy, Beijing, China
| | - Dapeng Bao
- Beijing Sport University, China Institute of Sport and Health Science, Beijing, China
| | - Brad Manor
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, United States
| | - Yuncong Zhou
- Beijing Sport University, School of Education, Beijing, China
| | - Junhong Zhou
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|