1
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
2
|
Huang L, He X, Peng W, He X, Xu B, Xu H, Wang Y, Xu W, Chen W, Wang S, Zhou L, Liu N, Xu Y, Lu W. Hyperuricemia induces liver injury by upregulating HIF-1α and inhibiting arginine biosynthesis pathway in mouse liver and human L02 hepatocytes. Biochem Biophys Res Commun 2022; 617:55-61. [PMID: 35696777 DOI: 10.1016/j.bbrc.2022.05.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms of uric acid (UA)-induced liver injury has not been clearly elucidated. In this study, we aimed to investigate the effect and action mechanisms of UA in liver injury. We analyzed the damaging effect of UA on mouse liver and L02 cells and subsequently performed metabolomics studies on L02 cells to identify abnormal metabolic pathways. Finally, we verified transcription factors that regulate related metabolic enzymes. UA directly activated the hepatic NLRP3 inflammasome and Bax apoptosis pathway invivo and invitro. Related metabolites in the arginine biosynthesis pathway (or urea cycle), l-arginine and l-argininosuccinate were decreased, and ammonia was increased in UA-stimulated L02 cells, which was mediated by carbamoyl phosphate synthase 1 (CPS1), argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) downregulation. UA upregulated hypoxia inducible factor-1alpha (HIF-1α) invivo and invitro, and HIF-1α inhibition alleviated the UA-induced ASS downregulation and hepatocyte injury. In conclusion, UA upregulates HIF-1α and inhibits urea cycle enzymes (UCEs). This leads to liver injury, with evidence of hepatocyte inflammation, apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Lei Huang
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xinyu He
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wen Peng
- Department of Oncology, The People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Xueqing He
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Bei Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hu Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Yaoxing Wang
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wenjun Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wentong Chen
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Rrsearch, Anhui Medical University, Hefei, 230032, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Ning Liu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Youzhi Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Wenjie Lu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|