1
|
Oka M, Yoshino R, Kitanaka N, Hall FS, Uhl GR, Kitanaka J. Role of glycogen synthase kinase-3β in dependence and abuse liability of alcohol. Alcohol Alcohol 2024; 59:agad086. [PMID: 38145944 DOI: 10.1093/alcalc/agad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Alcohol is a major abused drug worldwide that contributes substantially to health and social problems. These problems result from acute alcohol overuse as well as chronic use, leading to alcohol use disorder (AUD). A major goal of this field is to establish a treatment for alcohol abuse and dependence in patients with AUD. The central molecular mechanisms of acute alcohol actions have been extensively investigated in rodent models. AIMS One of the central mechanisms that may be involved is glycogen synthase kinase-3β (GSK-3β) activity, a key enzyme involved in glycogen metabolism but which has crucial roles in numerous cellular processes. Although the exact mechanisms leading from acute alcohol actions to these chronic changes in GSK-3β function are not yet clear, GSK-3β nonetheless constitutes a potential therapeutic target for AUD by reducing its function using GSK-3β inhibitors. This review is focused on the correlation between GSK-3β activity and the degree of alcohol consumption. METHODS Research articles regarding investigation of effect of GSK-3β on alcohol consumption in rodents were searched on PubMed, Embase, and Scopus databases using keywords "glycogen synthase kinase," "alcohol (or ethanol)," "intake (or consumption)," and evaluated by changes in ratios of pGSK-3βSer9/pGSK-3β. RESULTS In animal experiments, GSK-3β activity decreases in the brain under forced and voluntary alcohol consumption while GSK-3β activity increases under alcohol-seeking behavior. CONCLUSIONS Several pieces of evidence suggest that alterations in GSK-3β function are important mediators of chronic ethanol actions, including those related to alcohol dependence and the adverse effects of chronic ethanol exposure.
Collapse
Affiliation(s)
- Masahiro Oka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Rui Yoshino
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Nobue Kitanaka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Frederic and Mary Wolfe Center HEB 282D, Mail Stop 1015, 3000 Arlington Avenue,Toledo, OH 43614, United States
| | - George R Uhl
- Neurology Service, VA Maryland Healthcare System, 10 North Greene Street, Baltimore, MD 21201, United States
- Departments of Neurology and Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junichi Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
2
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
4
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
5
|
Fan Y, Wang J, He N, Feng H. PLK2 protects retinal ganglion cells from oxidative stress by potentiating Nrf2 signaling via GSK-3β. J Biochem Mol Toxicol 2021; 35:e22815. [PMID: 34047419 DOI: 10.1002/jbt.22815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress of retinal ganglion cells (RGCs) has been established as a main contributor to retinal degeneration in the pathogenesis of glaucoma. Polo-like kinase 2 (PLK2) has recently been reported to be a potent antioxidant protein that enhances cell survival in response to oxidative stress. To date, the involvement of PLK2 in RGC-associated oxidative stress is undermined. In the present work, we evaluated whether PLK2 regulates oxidative stress evoked by hydrogen peroxide (H2 O2 ) in RGCs. PLK2 expression was induced by H2 O2 stimulation in RGCs. Upregulation of PLK2 had a profoundly cytoprotective effect on H2 O2 -stimulated RGCs by attenuating cellular apoptosis and reactive oxygen species (ROS) level. Further data revealed that upregulation of PLK2 strikingly enhanced the activation of Nrf2 signaling. Moreover, PLK2 overexpression promoted glycogen synthase kinase (GSK)-3β phosphorylation, whereas PLK2 knockdown reduced the levels of GSK-3β phosphorylation. Notably, GSK-3β inhibition using a chemical inhibitor markedly abrogated the suppressive effects of PLK2 knockdown on Nrf2 activation. Repression of Nrf2 blocked the PLK2 overexpression-induced protective effects in H2 O2 -stimulated RGCs. Overall, this study elucidates that upregulation of PLK2 protects RGCs against H2 O2 -induced oxidative stress injury by upregulating Nrf2 activation via modulation of GSK-3β phosphorylation. These findings underline the pivotal role of PLK2 in mediating oxidative stress-evoked retinal degeneration in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Yazhi Fan
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haixiao Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Gustus K, Li L, Newville J, Cunningham LA. Functional and Structural Correlates of Impaired Enrichment-Mediated Adult Hippocampal Neurogenesis in a Mouse Model of Prenatal Alcohol Exposure. Brain Plast 2020; 6:67-82. [PMID: 33680847 PMCID: PMC7902980 DOI: 10.3233/bpl-200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Fetal alcohol spectrum disorders (FASDs) are associated with a wide range of cognitive deficiencies. Objective: We previously
found that gestational exposure to moderate levels of alcohol in mice throughout the 1st-2nd human trimester-equivalents
for brain development results in profound impairment of the hippocampal neurogenic response to enriched environment
(EE) in adulthood, without altering baseline neurogenesis rate under standard housing (SH). However, the functional and
structural consequences of impaired EE-mediated neurogenesis in the context of prenatal alcohol exposure (PAE) have
not been determined. Results: Here, we demonstrate that PAE-EE mice display impaired performance on a neurogenesis-dependent
pattern discrimination task, broadened behavioral activation of the dentate gyrus, as assessed by expression of the immediate
early gene, c-Fos, and impaired dendritic branching of adult-generated dentate granule cells (aDGCs). Conclusions: These studies further underscore the impact of moderate gestational alcohol exposure on adult hippocampal plasticity and support adult hippocampal neurogenesis as a potential therapeutic target to remediate certain neurological outcomes in FASD.
Collapse
Affiliation(s)
- Kymberly Gustus
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lu Li
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
7
|
Pharmacological inhibition of glycogen synthase kinase 3 increases operant alcohol self-administration in a manner associated with altered pGSK-3β, protein interacting with C kinase and GluA2 protein expression in the reward pathway of male C57BL/6J mice. Behav Pharmacol 2020; 31:15-26. [PMID: 31503067 DOI: 10.1097/fbp.0000000000000501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a constitutively active serine-threonine kinase that regulates numerous signaling pathways and has been implicated in neurodegenerative and neuropsychiatric diseases. Alcohol exposure increases GSK-3β (ser9) phosphorylation (pGSK-3β); however, few studies have investigated whether GSK-3 regulates the positive reinforcing effects of alcohol, which drive repetitive drug use. To address this goal, male C57BL/6J mice were trained to lever press on a fixed-ratio 4 schedule of sweetened alcohol or sucrose-only reinforcement in operant conditioning chambers. The GSK-3 inhibitor CHIR 99021 (0-10 mg/kg, i.p.) was injected 45 minutes prior to self-administration sessions. After completion of the self-administration dose-effect curve, potential locomotor effects of the GSK-3 inhibitor were assessed. To determine molecular efficacy, CHIR 99021 (10 mg/kg, i.p.) was evaluated on pGSK-3β, GSK-3β, protein interacting with C kinase (PICK1), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA2 subunit protein expression in amygdala, nucleus accumbens (NAcb), and frontal cortex. Results showed that CHIR 99021 (10 mg/kg) dose-dependently increased alcohol reinforced responding with no effect on sucrose self-administration or locomotor activity. CHIR 99021 (10 mg/kg) significantly decreased pGSK-3β expression in all brain regions tested, reduced PICK1 and increased GluA2 total expression only in the NAcb. We conclude that GSK-3 inhibition increased the reinforcing effects of alcohol in mice. This was associated with reduced pGSK-3β and PICK1, and increased GluA2 expression. Given prior results showing that AMPA receptor activity regulates alcohol self-administration, we propose that signaling through the GSK-3/PICK1/GluA2 molecular pathway drives the positive reinforcing effects of the drug, which are required for abuse liability.
Collapse
|
8
|
Bao H, Gao M. Overexpression of lemur tyrosine kinase-2 protects neurons from oxygen-glucose deprivation/reoxygenation-induced injury through reinforcement of Nrf2 signaling by modulating GSK-3β phosphorylation. Biochem Biophys Res Commun 2019; 521:964-970. [PMID: 31722791 DOI: 10.1016/j.bbrc.2019.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
Lemur tyrosine kinase-2 (LMTK2), a newly identified serine/threonine kinase, is a potential regulator of cell survival and apoptosis. However, little is known about its role in regulating neuronal survival during cerebral ischemia/reperfusion injury. The present study aimed to explore the potential function of LMTK2 in regulating neuronal survival using an in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury. Herein, we found that LMTK2 expression was markedly decreased in neurons following OGD/R exposure. Gain-of-function experiments demonstrated that LMTK2 overexpression significantly improved the viability and reduced apoptosis of neurons with OGD/R-induced injury. Moreover, LMTK2 overexpression reduced the production of reactive oxygen species (ROS) in OGD/R-exposed neurons. Notably, our results elucidated that LMTK2 overexpression reinforced the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) antioxidant signaling associated with increased glycogen synthase kinase-3β (GSK-3β) phosphorylation. GSK-3β inhibition by its specific inhibitor significantly reversed LMTK2-inhibition-linked apoptosis and ROS production. Additionally, silencing Nrf2 partially reversed the LMTK2-overexpression-mediated neuroprotective effect in OGD/R-injured neurons. Taken together, our results demonstrated that LMTK2 overexpression alleviated OGD/R-induced neuronal apoptosis and oxidative damage by enhancing Nrf2/ARE antioxidant signaling via modulation of GSK-3β phosphorylation. Our study suggests LMTK2 is a potential target for neuroprotection during cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Hong Bao
- Department of Anesthesiology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, China
| | - Min Gao
- Department of Anesthesiology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, China.
| |
Collapse
|
9
|
Hoffman JL, Faccidomo S, Kim M, Taylor SM, Agoglia AE, May AM, Smith EN, Wong LC, Hodge CW. Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:169-230. [PMID: 31733664 PMCID: PMC6939615 DOI: 10.1016/bs.irn.2019.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that represents the most common cause of dementia in the United States. Although the link between alcohol use and AD has been studied, preclinical research has potential to elucidate neurobiological mechanisms that underlie this interaction. This study was designed to test the hypothesis that nondependent alcohol drinking exacerbates the onset and magnitude of AD-like neural and behavioral pathology. We first evaluated the impact of voluntary 24-h, two-bottle choice home-cage alcohol drinking on the prefrontal cortex and amygdala neuroproteome in C57BL/6J mice and found a striking association between alcohol drinking and AD-like pathology. Bioinformatics identified the AD-associated proteins MAPT (Tau), amyloid beta precursor protein (APP), and presenilin-1 (PSEN-1) as the main modulators of alcohol-sensitive protein networks that included AD-related proteins that regulate energy metabolism (ATP5D, HK1, AK1, PGAM1, CKB), cytoskeletal development (BASP1, CAP1, DPYSL2 [CRMP2], ALDOA, TUBA1A, CFL2, ACTG1), cellular/oxidative stress (HSPA5, HSPA8, ENO1, ENO2), and DNA regulation (PURA, YWHAZ). To address the impact of alcohol drinking on AD, studies were conducted using 3xTg-AD mice that express human MAPT, APP, and PSEN-1 transgenes and develop AD-like brain and behavioral pathology. 3xTg-AD and wild-type mice consumed alcohol or saccharin for 4 months. Behavioral tests were administered during a 1-month alcohol-free period. Alcohol intake induced AD-like behavioral pathologies in 3xTg-AD mice including impaired spatial memory in the Morris Water Maze, diminished sensorimotor gating as measured by prepulse inhibition, and exacerbated conditioned fear. Multiplex immunoassay conducted on brain lysates showed that alcohol drinking upregulated primary markers of AD pathology in 3xTg-AD mice: Aβ 42/40 ratio in the lateral entorhinal and prefrontal cortex and total Tau expression in the lateral entorhinal cortex, medial prefrontal cortex, and amygdala at 1-month post alcohol exposure. Immunocytochemistry showed that alcohol use upregulated expression of pTau (Ser199/Ser202) in the hippocampus, which is consistent with late-stage AD. According to the NIA-AA Research Framework, these results suggest that alcohol use is associated with Alzheimer's pathology. Results also showed that alcohol use was associated with a general reduction in Akt/mTOR signaling via several phosphoproteins (IR, IRS1, IGF1R, PTEN, ERK, mTOR, p70S6K, RPS6) in multiple brain regions including hippocampus and entorhinal cortex. Dysregulation of Akt/mTOR phosphoproteins suggests alcohol may target this pathway in AD progression. These results suggest that nondependent alcohol drinking increases the onset and magnitude of AD-like neural and behavioral pathology in 3xTg-AD mice.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sara Faccidomo
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle Kim
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M Taylor
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Abigail E Agoglia
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley M May
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Evan N Smith
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - L C Wong
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clyde W Hodge
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
10
|
Gustus K, Lozano E, Newville J, Li L, Valenzuela CF, Cunningham LA. Resistance of Postnatal Hippocampal Neurogenesis to Alcohol Toxicity in a Third Trimester-Equivalent Mouse Model of Gestational Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:2504-2513. [PMID: 31573091 DOI: 10.1111/acer.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The adult hippocampal dentate is comprised of both developmentally generated dentate granule cells (dDGCs) and adult-generated dentate granule cells (aDGCs), which play distinct roles in hippocampal information processing and network function. EtOH exposure throughout gestation in mouse impairs the neurogenic response to enriched environment (EE) in adulthood, although the basal rate of adult neurogenesis under standard housing (SH) is unaffected. Here, we tested whether the production and/or survival of either dDGCs or aDGCs are selectively impaired following exposure of mice to EtOH vapors during early postnatal development (human third trimester-equivalent), and whether this exposure paradigm leads to impairment of EE-mediated dentate neurogenesis in adulthood. METHODS All experiments were performed using NestinCreERT2 :tdTomato bitransgenic mice, which harbor a tamoxifen-inducible tdTomato (tdTom) reporter for indelible labeling of newborn hippocampal DGCs. We exposed all mice to EtOH vapor or room air (Control) for 4 h/d from postnatal day (PND) 3 through PND 15. This paradigm resulted in a mean daily postexposure blood EtOH concentration of ~160 mg/dl. One cohort of neonatal mice received a single injection of tamoxifen at PND 2 and was sacrificed at either PND 16 or PND 50 to assess the impact of EtOH exposure on the production and long-term survival of dDGCs born during the early postnatal period. A second cohort of mice received daily injections of tamoxifen at PND 35 to 39 to label aDGCs and was exposed to SH or EE for 6 weeks prior to sacrifice. RESULTS Early postnatal EtOH exposure had no statistically significant effect on the production or survival of tdTom+ dDGCs, as assessed at PND 16 or PND 50. Early postnatal EtOH exposure also had no effect on the number of tdTom+ aDGCs under SH conditions. Furthermore, early postnatal EtOH exposure had no significant impact on the adult neurogenic response to EE. CONCLUSIONS Both early postnatal dentate neurogenesis and adult dentate neurogenesis, as well as the adult neurogenic response to EE, are surprisingly resistant to early postnatal EtOH vapor exposure in mice.
Collapse
Affiliation(s)
- Kymberly Gustus
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Evelyn Lozano
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jessie Newville
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lu Li
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Lee Anna Cunningham
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
11
|
Contreras A, Polín E, Miguéns M, Pérez-García C, Pérez V, Ruiz-Gayo M, Morales L, Del Olmo N. Intermittent-Excessive and Chronic-Moderate Ethanol Intake during Adolescence Impair Spatial Learning, Memory and Cognitive Flexibility in the Adulthood. Neuroscience 2019; 418:205-217. [PMID: 31491502 DOI: 10.1016/j.neuroscience.2019.08.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
Intermittent and excessive ethanol consumption over very short periods of time, known as binge drinking, is common in the adolescence, considered a vulnerable period to the effects of alcohol in terms of cognitive performance. One of the brain functions most drastically affected by ethanol in adolescent individuals seems to be spatial learning and memory dependent on the hippocampus. In the current study we have focused on the long-lasting effects on spatial learning and memory of intermittent and excessive alcohol consumption compared to chronic and moderate alcohol exposure during adolescence. Five-week old male Wistar rats consumed ethanol for 24 days following two different self-administration protocols that differed in the intake pattern. Spatial learning and memory were evaluated in the radial arm maze. Hippocampal synaptic plasticity was assessed by measuring field excitatory postsynaptic potentials. Hippocampal expression of AMPA and NMDA receptor subunits as well as levels of phosphorylated Ser9-GSK3β (the inactive form of GSK3β) were also quantified. Our results show that both patterns of ethanol intake during adolescence impair spatial learning, memory and cognitive flexibility in the adulthood in a dose-dependent way. Nevertheless, changes in synaptic plasticity, gene expression and levels of inactive GSK3β depended on the pattern of ethanol intake.
Collapse
Affiliation(s)
- Ana Contreras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Eduardo Polín
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, UNED, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Vicente Pérez
- Departamento de Psicología Básica I, Facultad de Psicología, UNED, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Lidia Morales
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
12
|
Contreras A, Morales L, Del Olmo N. The intermittent administration of ethanol during the juvenile period produces changes in the expression of hippocampal genes and proteins and deterioration of spatial memory. Behav Brain Res 2019; 372:112033. [PMID: 31201872 DOI: 10.1016/j.bbr.2019.112033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Binge drinking is a pattern of alcohol intake characterized by excessive and intermittent alcohol consumption over a very short period of time that is more used during adolescence. We aim to compare the lasting effects of a chronic-moderate vs. this intermittent-excessive way of alcohol intake during adolescence in spatial memory and in the expression of glutamatergic receptors and GSK3β activity. METHODS Adolescent male Wistar rats were given ethanol/saline i.p. injections in four different groups: High-I (4 g/kg of a 25% (vol/vol) every 3 days), Low-I (1 g/kg of a 5% (vol/vol) every 3 days), M (0.3 g/kg of a 2.5% (vol/vol) daily) and Control (C, sterile isotonic saline daily). Rats received ethanol for up to five 3-day cycles. Spatial memory was measured by spontaneous alternation in the Y-Maze. Gene and protein expression of hippocampal proteins were also analysed. RESULTS Both high- and low-intermittent ethanol administration produced spatial memory impairment and changes in glutamatergic receptors gene expression were observed regardless of the pattern of exposure. High doses of intermittent alcohol administration produced an increase of phosphorylation of GSK3β Ser9. Moreover, moderate alcohol administration produced a down-regulation of the AMPAR 2/3 ratio despite lack of spatial memory deficits. CONCLUSIONS Excessive and intermittent ethanol exposure during adolescence impaired the spatial memory processes during adulthood regardless of the amount of alcohol administered. Moreover, chronic-moderate and intermittent pattern induced changes in the expression of glutamatergic receptors. In addition, high-intermittent ethanol exposure during adolescence inactivated GSK3β by increasing its phosphorylation in Ser9.
Collapse
Affiliation(s)
- Ana Contreras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Lidia Morales
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain.
| |
Collapse
|
13
|
Ethanol-induced cognitive dysfunction is associated with alterations in the mammalian target of rapamycin signalling pathway in the hippocampus of male mice. Neuroreport 2019; 29:1230-1237. [PMID: 30063559 DOI: 10.1097/wnr.0000000000001104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the present study is to investigate the effect of acute excessive administration of ethanol on the expression of proteins related to the PI3K/Akt/mTOR signalling pathway in the mouse hippocampus and to reveal the possible molecular mechanism of learning and memory deficits induced by ethanol. A total of 120 8-week-old Kunming mice (half male and half female) were randomly assigned into low-dose, moderate-dose, and high-dose male and female groups with intragastric administration of 12.5, 25 and 50% ethanol, respectively, at the dosage of 0.1 ml/10 g·day for 14 days. The male and female control groups received an equal volume of distilled water. Then, the spatial learning and memory of the mice were evaluated by the Morris water maze task. The expression of p-mTOR, p-Akt, mTOR and Akt proteins was tested by western blotting and immunohistochemical staining methods in the hippocampal formation in each group, and haematoxylin-eosin stain was used to identify morphological changes in the hippocampal region. Our results indicated that 25 and 50% ethanol administration led to cognitive dysfunction and hippocampal pyramidal cell impairment in the female and male mice, with the male mice showing more severe impairment. In the 50% ethanol group, the male mice exhibited low expression levels of p-Akt and p-mTOR, but the female mice had no significant differences compared with the respective control group. Interestingly, the male expression levels of p-Akt and p-mTOR were significantly lower than those of females. Overall, these findings suggested that the cognitive deficits induced by ethanol are more serious in male mice than in female mice, and the PI3K/Akt/mTOR signalling pathway in the hippocampus might be involved in the impairment process.
Collapse
|