Mangiante MJ, Davis AJS, Panlasigui S, Neilson ME, Pfingsten I, Fuller PL, Darling JA. Trends in nonindigenous aquatic species richness in the United States reveal shifting spatial and temporal patterns of species introductions.
AQUATIC INVASIONS 2018;
13:323-338. [PMID:
31447950 PMCID:
PMC6707539 DOI:
10.3391/ai.2018.13.3.02]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the spatial and temporal dynamics underlying the introduction and spread of nonindigenous aquatic species (NAS) can provide important insights into the historical drivers of biological invasions and aid in forecasting future patterns of nonindigenous species arrival and spread. Increasingly, public databases of species observation records are being used to quantify changes in NAS distributions across space and time, and are becoming an important resource for researchers, managers, and policy-makers. Here we use publicly available data to describe trends in NAS introduction and spread across the conterminous United States over more than two centuries of observation records. Available data on first records of NAS reveal significant shifts in dominance of particular introduction patterns over time, both in terms of recipient regions and likely sources. These spatiotemporal trends at the continental scale may be subject to biases associated with regional variation in sampling effort, reporting, and data curation. We therefore also examined two additional metrics, the number of individual records and the spatial coverage of those records, which are likely to be more closely associated with sampling effort. Our results suggest that broad-scale patterns may mask considerable variation across regions, time periods, and even entities contributing to NAS sampling. In some cases, observed temporal shifts in species discovery may be influenced by dramatic fluctuations in the number and spatial extent of individual observations, reflecting the possibility that shifts in sampling effort may obscure underlying rates of NAS introduction.
Collapse