1
|
Bai X, Zhang K, Ou C, Nie B, Zhang J, Huang Y, Zhang Y, Huang J, Ouyang H, Cao M, Huang W. Selective activation of AKAP150/TRPV1 in ventrolateral periaqueductal gray GABAergic neurons facilitates conditioned place aversion in male mice. Commun Biol 2023; 6:742. [PMID: 37460788 PMCID: PMC10352381 DOI: 10.1038/s42003-023-05106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Aversion refers to feelings of strong dislike or avoidance toward particular stimuli or situations. Aversion can be caused by pain stimuli and has a long-term negative impact on physical and mental health. Aversion can also be caused by drug abuse withdrawal, resulting in people with substance use disorder to relapse. However, the mechanisms underlying aversion remain unclear. The ventrolateral periaqueductal gray (vlPAG) is considered to play a key role in aversive behavior. Our study showed that inhibition of vlPAG GABAergic neurons significantly attenuated the conditioned place aversion (CPA) induced by hindpaw pain pinch or naloxone-precipitated morphine withdrawal. However, activating or inhibiting glutamatergic neurons, or activating GABAergic neurons cannot affect or alter CPA response. AKAP150 protein expression and phosphorylated TRPV1 (p-TRPV1) were significantly upregulated in these two CPA models. In AKAP150flox/flox mice and C57/B6J wild-type mice, cell-type-selective inhibition of AKAP150 in GABAergic neurons in the vlPAG attenuated aversion. However, downregulating AKAP150 in glutamatergic neurons did not attenuate aversion. Knockdown of AKAP150 in GABAergic neurons effectively reversed the p-TRPV1 upregulation in these two CPA models utilized in our study. Collectively, inhibition of the AKAP150/p-TRPV1 pathway in GABAergic neurons in the vlPAG may be considered a potential therapeutic target for the CPA response.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianxing Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongtian Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Minghui Cao
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Liu L, Tian Y. Capsaicin Changes the Pattern of Brain Rhythms in Sleeping Rats. Molecules 2023; 28:4736. [PMID: 37375291 DOI: 10.3390/molecules28124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The heat and capsaicin sensor TRPV1 ion channels were originally discovered in sensory neurons of dorsal root ganglia, and later found in many other tissues and organs. However, whether TRPV1 channels are present in brain regions other than the hypothalamus has been a subject of debate. Here, we addressed this issue with an unbiased functional test by recording electroencephalograms (EEGs) to examine whether capsaicin injection directly into the rat lateral ventricle could alter brain electrical activity. We observed that EEGs during the sleep stage could be significantly perturbed by capsaicin, whereas EEGs during the awake stage did not show a detectable change. Our results are consistent with TRPV1 expression in selective brain regions whose activities are dominative during the sleep stage.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Yuhua Tian
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
3
|
Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun 2023; 14:2451. [PMID: 37117175 PMCID: PMC10147690 DOI: 10.1038/s41467-023-38162-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yury A Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Wang X, Bao C, Li Z, Yue L, Hu L. Side Effects of Opioids Are Ameliorated by Regulating TRPV1 Receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042387. [PMID: 35206575 PMCID: PMC8872563 DOI: 10.3390/ijerph19042387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022]
Abstract
Humans have used opioids to suppress moderate to severe pain for thousands of years. However, the long-term use of opioids has several adverse effects, such as opioid tolerance, opioid-induced hyperalgesia, and addiction. In addition, the low efficiency of opioids in controlling neuropathic pain limits their clinical applications. Combining nonopioid analgesics with opioids to target multiple sites along the nociceptive pathway may alleviate the side effects of opioids. This study reviews the feasibility of reducing opioid side effects by regulating the transient receptor potential vanilloid 1 (TRPV1) receptors and summarizes the possible underlying mechanisms. Blocking and activating TRPV1 receptors can improve the therapeutic profile of opioids in different manners. TRPV1 and μ-opioid receptors are bidirectionally regulated by β-arrestin2. Thus, drug combinations or developing dual-acting drugs simultaneously targeting μ-opioid and TRPV1 receptors may mitigate opioid tolerance and opioid-induced hyperalgesia. In addition, TRPV1 receptors, especially expressed in the dorsal striatum and nucleus accumbens, participate in mediating opioid reward, and its regulation can reduce the risk of opioid-induced addiction. Finally, co-administration of TRPV1 antagonists and opioids in the primary action sites of the periphery can significantly relieve neuropathic pain. In general, the regulation of TRPV1 may potentially ameliorate the side effects of opioids and enhance their analgesic efficacy in neuropathic pain.
Collapse
Affiliation(s)
- Xiaqing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyu Bao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.Y.); (L.H.)
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.Y.); (L.H.)
| |
Collapse
|
5
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
6
|
Allain AE, Aribo O, Medrano MC, Fournier ML, Bertrand SS, Caille S. Impact of acute and chronic nicotine administration on midbrain dopaminergic neuron activity and related behaviors in TRPV1 knock-out juvenile mice. Eur J Neurosci 2021; 55:697-713. [PMID: 34939238 DOI: 10.1111/ejn.15577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
The addictive properties of nicotine, the main alkaloid in tobacco and tobacco-derived products, largely depend on its action on the activity of midbrain dopamine (DA) neurons. The Transient Receptor Potential Vanilloid 1 (TRPV1) channel has also been examined as an emerging contributor to addiction-related symptoms due to its ability to modulate midbrain neurons. Thus, the objective of our study was to explore the role of TRPV1 receptors (TRPV1Rs) on nicotine-induced behaviors and associated response of DA neuron activity. Both wild type juvenile mice and juvenile mice with invalidation of the TRPV1R gene were exposed to acute or chronic nicotine 0.3 mg/kg administration. We analyzed locomotor activity in response to the drug. In addition, we performed cell-attached and whole-cell recordings from ventral tegmental area (VTA) neurons after nicotine exposure. Our results showed that the genetic deletion of TRPV1Rs reduced nicotine-induced locomotor sensitization. In addition, it provided evidence in support of TRPV1Rs being regulators of inhibitory synaptic transmission in the VTA. However, TRPV1Rs did not seem to modulate either nicotine-induced conditioning place preference or nicotine-evoked electrical activity of DA neurons. In conclusion, TRPV1Rs modulate nicotine-induced psychomotor sensitization in mice independently of a control on VTA DA neuron activity. Thus, TRPV1R control may depend on another key player of the mesolimbic circuit.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.,Univ. Bordeaux, CNRS, PHYCELL Platform INCIA, UMR 5287, Bordeaux, France
| | - Oceane Aribo
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | | | - Sandrine S Bertrand
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.,Univ. Bordeaux, CNRS, PHYCELL Platform INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
7
|
Escelsior A, Sterlini B, Murri MB, Serafini G, Aguglia A, da Silva BP, Corradi A, Valente P, Amore M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behav Brain Res 2020; 393:112734. [DOI: 10.1016/j.bbr.2020.112734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
8
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
A novel designer drug, 25N-NBOMe, exhibits abuse potential via the dopaminergic system in rodents. Brain Res Bull 2019; 152:19-26. [DOI: 10.1016/j.brainresbull.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|
10
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
11
|
Ma SX, Kim HC, Lee SY, Jang CG. TRPV1 modulates morphine self-administration via activation of the CaMKII-CREB pathway in the nucleus accumbens. Neurochem Int 2018; 121:1-7. [PMID: 30292787 DOI: 10.1016/j.neuint.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Opioid addiction is a growing problem for public health, and opioids have correspondingly become more heavily regulated over time. We have previously shown that TRPV1 plays a critical role in morphine addiction using a self-administration paradigm in rats, and the current study evaluates the effects of the TRPV1 signaling pathway on morphine self-administration (SA). We found that treatment with a selective TRPV1 antagonist, SB366791, significantly decreased the morphine SA-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), Akt and the cAMP response element binding protein (CREB) in the nucleus accumbens (NAc). In addition, phospho-PKA and phospho-PKC expression levels were significantly increased in the NAc of the morphine-SA groups, regardless of SB366791 treatment. Finally, local microinjection of SB366791 into the NAc significantly suppressed the maintenance of morphine SA. Taken together, our findings highlight that TRPV1 plays an important role in morphine addiction, likely via activation of the CaMKII-CREB pathway in the NAc.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Neurotoxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
12
|
Blockade of TRPV1 Inhibits Methamphetamine-induced Rewarding Effects. Sci Rep 2018; 8:882. [PMID: 29343767 PMCID: PMC5772440 DOI: 10.1038/s41598-018-19207-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022] Open
Abstract
Methamphetamine (MAP) is the most widely used psychostimulant in the world, but the exact mechanisms underlying MAP addiction are not yet fully understood. Recent studies have identified the distribution of TRPV1 in several brain regions that are related to drug addiction, including nucleus accumbens (NAc) and dorsal striatum (DSt). In the present study, we performed conditioned place preference (CPP) and self-administration tests to examine the effects of capsazepine (CPZ) and SB366791 (SB) on MAP reward. We found that both CPZ and SB significantly inhibited MAP-induced CPP and self-administration; in contrast, TRPV1 knock-out (KO) mice did not develop MAP-induced CPP. Real-time RT-PCR, Western blot and quantitative autoradiographic tests showed up-regulation of TRPV1 mRNA and protein expression in the NAc and/or DSt regions of mice exhibiting MAP-induced CPP. In addition, an in vivo microdialysis experiment showed that CPZ dramatically reduced dopamine (DA) levels in the NAc region of MAP-treated mice. Furthermore, attenuated dopamine transporter (DAT) binding levels in the NAc and DSt regions of MAP-induced CPP mice were reversed by CPZ. Together, these data suggest that TRPV1 plays an important role in MAP reward via the modulation of DA release and DAT density, thereby providing a novel therapeutic target for MAP addiction.
Collapse
|
13
|
Hong SI, Nguyen TL, Ma SX, Kim HC, Lee SY, Jang CG. TRPV1 modulates morphine-induced conditioned place preference via p38 MAPK in the nucleus accumbens. Behav Brain Res 2017; 334:26-33. [PMID: 28734766 DOI: 10.1016/j.bbr.2017.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
Emerging evidence suggests that the transient receptor potential vanilloid type 1 channel (TRPV1) is a novel target for the treatment of drug addiction, such as cocaine and morphine. Previously we reported that TRPV1 inhibition reduced morphine reward in the dorsal striatum (DSt) of mice and morphine self-administration through a decrease in accumbal activity in rats. However, the role of TRPV1 on morphine-conditioned reward in addiction-related brain regions, such as the nucleus accumbens (NAc), has not been previously established. Here, we investigated the effects of TRPV1 on morphine conditioned place preference (CPP) and intracellular mechanisms of TRPV1 using Western blot analysis and immunohistochemistry (IHC) in morphine-administered mice. TRPV1 knockout mice did not exhibit morphine reward responses, and both i.p. and intra-NAc injections of SB366791, a selective TRPV1 antagonist, reduced morphine-induced CPP in wild-type mice. Furthermore, i.p. injection of SB203580, a selective p38 MAPK inhibitor, also dampened morphine-induced CPP. To determine the molecular mechanisms of the TRPV1/p38 MAPK pathway in morphine CPP, we investigated the expression of adenylyl cyclase type 1 (AC1) and phospho-p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) in the NAc. Either SB366791 or SB203580 decreased the protein expression levels of phospho-p38 MAPK, phosphor-NF-κB, and AC1 in the NAc of morphine CPP mice. Taken together, our findings suggest that TRPV1 may modulate morphine-induced conditioned reward effects via the p38 MAPK signaling pathway in the NAc. Therefore, blockade of TRPV1 may provide a novel therapeutic approach for the prevention and treatment of opioid addiction.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Thi-Lien Nguyen
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyoung-Chun Kim
- Neurotoxicology Program, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|