1
|
Anversa RG, Barron ML, Walker LC, Lawrence AJ. Emerging GPCR targets for AUD: Insights from preclinical studies. Curr Opin Neurobiol 2024; 87:102896. [PMID: 38971113 DOI: 10.1016/j.conb.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest group of membrane receptors in the central nervous system and one of the key proteins for signal transduction between cells. Currently, many drugs available on the market act via GPCRs and these receptors remain attractive targets for the treatment of brain disorders, including alcohol use disorder (AUD). Here, we describe the most recent literature, with a primary focus on the past 5 years, on GPCR targets with the potential for reducing behaviours associated with excessive alcohol intake. Specifically, we focus on preclinical evidence of compounds with attractive pharmacological profiles and potential for future clinical investigation for the treatment of AUD.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Maiya L Barron
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia.
| |
Collapse
|
2
|
Castle ME, Flanigan ME. The role of brain serotonin signaling in excessive alcohol consumption and withdrawal: A call for more research in females. Neurobiol Stress 2024; 30:100618. [PMID: 38433994 PMCID: PMC10907856 DOI: 10.1016/j.ynstr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a leading cause of death and disability worldwide, but current treatments are insufficient in fully addressing the symptoms that often lead to relapses in alcohol consumption. The brain's serotonin system has been implicated in AUD for decades and is a major regulator of stress-related behaviors associated with increased alcohol consumption. This review will discuss the current literature on the association between neurobiological adaptations in serotonin systems and AUD in humans as well as the effectiveness of serotonin receptor manipulations on alcohol-related behaviors like consumption and withdrawal. We will further discuss how these findings in humans relate to findings in animal models, including a comparison of systemic pharmacological manipulations modulating alcohol consumption. We next provide a detailed overview of brain region-specific roles for serotonin and serotonin receptor signaling in alcohol-related behaviors in preclinical animal models, highlighting the complexity of forming a cohesive model of serotonin function in AUD and providing possible avenues for more effective therapeutic intervention. Throughout the review, we discuss what is known about sex differences in the sequelae of AUD and the role of serotonin in these sequelae. We stress a critical need for additional studies in women and female animals so that we may build a clearer path to elucidating sex-specific serotonergic mechanisms and develop better treatments.
Collapse
Affiliation(s)
- Megan E. Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, Castrén E, McCorvy JD, Palner M, Aguilar-Valles A. Beyond the 5-HT 2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action. J Neurosci 2023; 43:7472-7482. [PMID: 37940583 PMCID: PMC10634557 DOI: 10.1523/jneurosci.1384-23.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 11/10/2023] Open
Abstract
Serotonergic psychedelics, such as psilocybin and LSD, have garnered significant attention in recent years for their potential therapeutic effects and unique mechanisms of action. These compounds exert their primary effects through activating serotonin 5-HT2A receptors, found predominantly in cortical regions. By interacting with these receptors, serotonergic psychedelics induce alterations in perception, cognition, and emotions, leading to the characteristic psychedelic experience. One of the most crucial aspects of serotonergic psychedelics is their ability to promote neuroplasticity, the formation of new neural connections, and rewire neuronal networks. This neuroplasticity is believed to underlie their therapeutic potential for various mental health conditions, including depression, anxiety, and substance use disorders. In this mini-review, we will discuss how the 5-HT2A receptor activation is just one facet of the complex mechanisms of action of serotonergic psychedelics. They also interact with other serotonin receptor subtypes, such as 5-HT1A and 5-HT2C receptors, and with neurotrophin receptors (e.g., tropomyosin receptor kinase B). These interactions contribute to the complexity of their effects on perception, mood, and cognition. Moreover, as psychedelic research advances, there is an increasing interest in developing nonhallucinogenic derivatives of these drugs to create safer and more targeted medications for psychiatric disorders by removing the hallucinogenic properties while retaining the potential therapeutic benefits. These nonhallucinogenic derivatives would offer patients therapeutic advantages without the intense psychedelic experience, potentially reducing the risks of adverse reactions. Finally, we discuss the potential of psychedelics as substrates for post-translational modification of proteins as part of their mechanism of action.
Collapse
Affiliation(s)
- Lindsay P Cameron
- Department of Psychiatry, Stanford University, Palo Alto 94305, California
| | - Joseph Benetatos
- Department of Neurosciences, University of California-San Diego, La Jolla 92093, California
| | - Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa K1S 5B6, Ontario Canada
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, Wisconsin
| | - Alaina M Jaster
- Pharmacology and Toxicology, Physiology and Biophysics, Virginia Commonwealth University, Richmond 23298, Virginia
| | - Rafael Moliner
- Neuroscience Center, HiLIFE and Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE and Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, Wisconsin
| | - Mikael Palner
- Clinical Physiology and Nuclear Medicine, Department Clinical Research, University of Southern Denmark, Odense DK-2100, Denmark
| | | |
Collapse
|
4
|
Fletcher PJ, Rahbarnia A, Li Z, Ji X, Higgins GA, Funk D, Lê AD. Effects of 5-HT 2C receptor stimulation in male mice on behaviour and Fos expression: feeding, reward and impulsivity. Behav Brain Res 2023; 447:114438. [PMID: 37059187 DOI: 10.1016/j.bbr.2023.114438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Serotonin modulates many motivated behaviours via multiple receptor subtypes. Agonists at 5-HT2C receptors have potential for treating behavioural problems associated with obesity and drug use. In this work we examined the impact of the 5-HT2C receptor agonist lorcaserin on several motivated behaviours related to feeding, reward and waiting impulsivity, and on neuronal activation in key brain areas mediating those behaviours. In male C57BL/6J mice effects of lorcaserin (0.2, 1 and 5mg/kg) were examined on feeding, and on operant responding for a palatable reward. Feeding was reduced only at 5mg/kg, whereas operant responding was reduced at 1mg/kg. At a much lower dose range lorcaserin 0.05-0.2mg/kg also reduced impulsive behaviour measured as premature responding in the 5-choice serial reaction time (5-CSRT) test, without affecting attention or ability to perform the task. Lorcaserin induced Fos expression in brain regions related to feeding (paraventricular nucleus and arcuate nucleus), reward (ventral tegmental area), and impulsivity (medial prefrontal cortex, VTA) although these effects did not show the same differential sensitivity to lorcaserin as the behavioural measures. These results indicate a broad profile of action of 5-HT2C receptor stimulation on brain circuitry and on motivated behaviours, but with clear evidence of differential sensitivity across behavioural domains. This is exemplified by that fact that impulsive behaviour was reduced at a much lower dose range than was feeding behaviour. Along with previous work, and some clinical observations, this work supports the idea that 5-HT2C agonists may be useful for behavioural problems associated with impulsivity.
Collapse
Affiliation(s)
- Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| | - Arya Rahbarnia
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoxia Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Xiaodong Ji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Guy A Higgins
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; InterVivo Solutions Inc, Fergus, Ontario, Canada
| | - Douglas Funk
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - A D Lê
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Flanigan ME, Hon OJ, D'Ambrosio S, Boyt KM, Hassanein L, Castle M, Haun HL, Pina MM, Kash TL. Subcortical serotonin 5HT 2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice. Nat Commun 2023; 14:1800. [PMID: 37002196 PMCID: PMC10066391 DOI: 10.1038/s41467-023-36808-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/17/2023] [Indexed: 04/03/2023] Open
Abstract
Binge alcohol consumption induces discrete social and arousal disturbances in human populations that promote increased drinking and accelerate the progression of Alcohol Use Disorder. Here, we show in a mouse model that binge alcohol consumption disrupts social recognition in females and potentiates sensorimotor arousal in males. These negative behavioral outcomes were associated with sex-specific adaptations in serotonergic signaling systems within the lateral habenula (LHb) and the bed nucleus of the stria terminalis (BNST), particularly those related to the receptor 5HT2c. While both BNST and LHb neurons expressing this receptor display potentiated activation following binge alcohol consumption, the primary causal mechanism underlying the effects of alcohol on social and arousal behaviors appears to be excessive activation of LHb5HT2c neurons. These findings may have valuable implications for the development of sex-specific treatments for mood and alcohol use disorders targeting the brain's serotonin system.
Collapse
Affiliation(s)
- M E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - O J Hon
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - S D'Ambrosio
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - K M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - L Hassanein
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - H L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M M Pina
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - T L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Gumpper RH, Fay JF, Roth BL. Molecular insights into the regulation of constitutive activity by RNA editing of 5HT 2C serotonin receptors. Cell Rep 2022; 40:111211. [PMID: 35977511 PMCID: PMC9422347 DOI: 10.1016/j.celrep.2022.111211] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
RNA editing is a process by which post-transcriptional changes of mRNA nucleotides alter protein function through modification of the amino acid content. The 5HT2C serotonin receptor, which undergoes 32 distinct RNA-editing events leading to 24 protein isoforms, is a notable example of this process. These 5HT2C isoforms display differences in constitutive activity, agonist/inverse agonist potencies, and efficacies. To elucidate the molecular mechanisms responsible for these effects of RNA editing, we present four active-state 5HT2C-transducer-coupled structures of three representative isoforms (INI, VGV, and VSV) with the selective drug lorcaserin (Belviq) and the classic psychedelic psilocin. We also provide a comprehensive analysis of agonist activation and constitutive activity across all 24 protein isoforms. Collectively, these findings reveal a unique hydrogen-bonding network located on intracellular loop 2 that is subject to RNA editing, which differentially affects GPCR constitutive and agonist signaling activities. It is established that the 5HT2C receptor undergoes RNA editing leading to 24 isoforms. Several isoforms exhibit changes in basal activity and are linked to pathologies. Gumpper et al. have done a systematic structure-function characterization of all the isoforms revealing the underlying mechanisms that govern basal activity of the 5HT2C receptor.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Fletcher PJ, Li Z, Ji X, Higgins GA, Funk D, Lê A. Effects of pimavanserin and lorcaserin on alcohol self-administration and reinstatement in male and female rats. Neuropharmacology 2022; 215:109150. [DOI: 10.1016/j.neuropharm.2022.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
|
8
|
Henriques GM, Anjos-Santos A, Rodrigues IRS, Nascimento-Rocha V, Reis HS, Libarino-Santos M, Barros-Santos T, Yokoyama TS, Bertagna NB, Favoretto CA, Moraes CRG, Cruz FC, Barbosa PCR, Marinho EAV, Oliveira-Lima AJ, Berro LF. Ibogaine Blocks Cue- and Drug-Induced Reinstatement of Conditioned Place Preference to Ethanol in Male Mice. Front Pharmacol 2021; 12:739012. [PMID: 34621171 PMCID: PMC8490685 DOI: 10.3389/fphar.2021.739012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Ibogaine is a psychedelic extracted from the plant Tabernanthe iboga Baill. (Apocynaceae), natural from Africa, and has been proposed as a potential treatment for substance use disorders. In animal models, ibogaine reduces ethanol self-administration. However, no study to date has investigated the effects of ibogaine on ethanol-induced conditioned place preference (CPP). The present study aimed to investigate the effects of repeated treatment with ibogaine on the reinstatement of CPP to ethanol in male mice. The rewarding effects of ethanol (1.8 g/kg, i. p.) or ibogaine (10 or 30 mg/kg, p. o.) were investigated using the CPP model. Furthermore, we evaluated the effects of repeated treatment with ibogaine (10 or 30 mg/kg, p. o.) on the reinstatement of ethanol-induced CPP. Reinstatement was evaluated under two conditions: 1) during a priming injection re-exposure test in which animals received a priming injection of ethanol and had free access to the CPP apparatus; 2) during a drug-free test conducted 24 h after a context-paired re-exposure, in which subjects received an injection of ethanol and were confined to the compartment previously conditioned to ethanol. Our results show that ethanol, but not ibogaine, induced CPP in mice. Treatment with ibogaine after conditioning with ethanol blocked the reinstatement of ethanol-induced CPP, both during a drug priming reinstatement test and during a drug-free test conducted after re-exposure to ethanol in the ethanol-paired compartment. Our findings add to the literature suggesting that psychedelics, in particular ibogaine, may have therapeutic properties for the treatment of alcohol use disorder at doses that do not have rewarding effects per se.
Collapse
Affiliation(s)
| | - Alexia Anjos-Santos
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil.,Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | - Isa R S Rodrigues
- Department of Biological Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | | | - Henrique S Reis
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | | | - Thaísa Barros-Santos
- Department of Biological Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | - Thais S Yokoyama
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | - Natalia B Bertagna
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | | | | | - Fábio C Cruz
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | - Paulo C R Barbosa
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | | | - Laís F Berro
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil.,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|