1
|
Ademar K, Ulenius L, Loftén A, Söderpalm B, Adermark L, Ericson M. Separate mechanisms regulating accumbal taurine levels during baseline conditions and following ethanol exposure in the rat. Sci Rep 2024; 14:24166. [PMID: 39406746 PMCID: PMC11480114 DOI: 10.1038/s41598-024-74449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Ethanol-induced dopamine release in the nucleus accumbens (nAc) is associated with reward and reinforcement, and for ethanol to elevate nAc dopamine levels, a simultaneous increase in endogenous taurine is required within the same brain region. By employing in vivo microdialysis in male Wistar rats combined with pharmacological, chemogenetic and metabolic approaches, our aim with this study was to identify mechanisms underlying ethanol-induced taurine release. Our results demonstrate that the taurine elevation, elicited by either systemic or local ethanol administration, occurs both in presence and absence of action potential firing or NMDA receptor blockade. Inhibition of volume regulated anion channels did not alter the ethanol-induced taurine levels, while inhibition of the taurine transporter occluded the ethanol-induced taurine increase, putatively due to a ceiling effect. Selective manipulation of nAc astrocytes using Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) did not affect ethanol-induced taurine release. However, activation of Gi-coupled DREADDs, or metabolic inhibition using fluorocitrate, rather enhanced than depressed taurine elevation. Finally, ethanol-induced taurine increase was fully blocked in rats pre-treated with the L-type Ca2+-channel blocker nicardipine, suggesting that the release is Ca2+ dependent. In conclusion, while astrocytes appear to be important regulators of basal taurine levels in the nAc, they do not appear to be the main cells underlying ethanol-induced taurine release.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
| | - Lisa Ulenius
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| | - Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| |
Collapse
|
2
|
Meinhardt MW, Gerlach B, Spanagel R. Good Practice Guideline for Preclinical Alcohol Research: The STRINGENCY Framework. Curr Top Behav Neurosci 2024. [PMID: 39117860 DOI: 10.1007/7854_2024_484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Research in the field of preclinical alcohol research, but also science in general, has a problem: Many published scientific results cannot be repeated. As a result, findings from preclinical research often do not translate well to humans, causing increasing disappointment and calls for restructuring of preclinical research, that is, better reproducibility of preclinical research. However, the replication crisis is an inherent problem in biomedical research. Replication failures are not only due to small experimental variations but are often the result of poor methodology. In response to the replication crisis, numerous guidelines and recommendations have been proposed to promote transparency, rigor, and reproducibility in scientific research. What is missing today is a framework that integrates all the confusing information that results from all these guidelines and recommendations. Here we present STRINGENCY, an integrative approach to good practice guidelines for preclinical alcohol research, which can also apply to behavioral research in general and which aims to improve preclinical research to better prepare it for translation and minimize the "valley of death" in translational research. STRINGENCY includes systematic review and, when possible, meta-analysis prior to study design, sample size calculation, preregistration, multisite experiments, scientific data management (FAIR), reporting of data using ARRIVE, generalization of research data, and transparent publications that allow reporting of null results. We invite the scientific community to adopt STRINGENCY to improve the reliability and impact of preclinical alcohol research.
Collapse
Affiliation(s)
- Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.
| | - Björn Gerlach
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Guarantors of EQIPD e.V., Heidelberg, Germany
- PAASP GmbH, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Mannheim, Heidelberg, Ulm, Germany.
| |
Collapse
|
3
|
Söderpalm B, Ericson M. Alcohol and the dopamine system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:21-73. [PMID: 38555117 DOI: 10.1016/bs.irn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Ademar K, Loftén A, Nilsson M, Domi A, Adermark L, Söderpalm B, Ericson M. Acamprosate reduces ethanol intake in the rat by a combined action of different drug components. Sci Rep 2023; 13:17863. [PMID: 37857829 PMCID: PMC10587117 DOI: 10.1038/s41598-023-45167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Alcohol misuse accounts for a sizeable proportion of the global burden of disease, and Campral® (acamprosate; calcium-bis-(N-acetylhomotaurinate)) is widely used as relapse prevention therapy. The mechanism underlying its effect has in some studies been attributed to the calcium moiety and not to the N-acetylhomotaurine part of the compound. We recently suggested that the dopamine elevating effect of acamprosate is mediated both by N-acetylhomotaurine and calcium in a glycine receptor dependent manner. Here we aimed to explore, by means of in vivo microdialysis, if our previous study using local administration was functionally relevant and if systemic administration of the sodium salt of N-acetylhomotaurine (sodium acamprosate; 200 mg/kg, i.p.) enhanced the effects of calcium chloride (CaCl2; 73.5 mg/kg, i.p.) on nucleus accumbens (nAc) dopamine and/or taurine levels in male Wistar rats. In addition, we investigated the impact of regular acamprosate and the combination of CaCl2 and N-acetylhomotaurine on the alcohol deprivation effect (ADE). Finally, we assessed if N-acetylhomotaurine potentiates the ethanol-intake reducing effect of CaCl2 in a two-bottle choice voluntary ethanol consumption model followed by an ADE paradigm. Systemic administration of regular acamprosate, sodium acamprosate and CaCl2 all trended to increase nAc dopamine whereas the combination of CaCl2 and sodium acamprosate produced a significant increase. Sodium acamprosate elevated extracellular taurine levels without additional effects of CaCl2. Ethanol intake was significantly reduced by systemic administration of CaCl2 without additional effects of the combination of CaCl2 and sodium acamprosate. Both acamprosate and CaCl2 combined with sodium acamprosate blocked the ADE following acute treatment. The data presented suggest that CaCl2 and N-acetylhomotaurine act in concert on a neurochemical level, but calcium appears to have the predominant effect on ethanol intake.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
| | - Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathilda Nilsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| |
Collapse
|
5
|
Abbasi Z, Baluchnejadmojarad T, Roghani M, Susanabadi A, Farbin M, Mehrabi S. Acamprosate effect on neuropathic pain in rats: With emphasis on the role of ERK/MAPK pathway and SCN9A sodium channel. J Chem Neuroanat 2023; 131:102282. [PMID: 37142001 DOI: 10.1016/j.jchemneu.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic pain owing to nerve damage or diseases of the central nervous system (CNS). The expression of SCN9A, which encodes the Nav1.7 voltage-gated sodium channel and ERK have been found to change significantly in many cases of neuropathic pain. Here, we investigated effects of acamprosate on neuropathic pain, taking into account the crucial roles of SCN9A, the ERK signaling pathway, and inflammatory markers in a rat model of chronic constriction injury (CCI). METHODS Acamprosate (300 mg/kg) was injected intraperitoneally (i.p.) for 14 days. The tail-immersion, acetone, and formalin tests were used to determine behavioral tests such as heat allodynia, cold allodynia, and chemical hyperalgesia, respectively. Lumbar spinal cord was extracted and processed for Nissl staining. The amount of spinal SCN9A expression and ERK phosphorylation were examined using ELISA assay. RESULTS The expression of SCN9A, ERK, inflammatory cytokines (IL-6 and TNF-α), allodynia and hyperalgesia significantly increased on days 7 and 14 following CCI. The treatment not only reduced neuropathic pain but also blocked CCI's effects on SCN9A upregulation and ERK phosphorylation. CONCLUSION This research demonstrated that acamprosate reduces the neuropathic pain induced by CCI of the sciatic nerve in rats by preventing cell loss, inhibiting spinal SCN9A expression, ERK phosphorylation, and inflammatory cytokines, suggesting potential therapeutic implications of acamprosate administration for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zeinab Abbasi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tourandokht Baluchnejadmojarad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and pain medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Farbin
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Quintrell E, Wyrwoll C, Rosenow T, Larcombe A, Kelty E. The effects of acamprosate on maternal and neonatal outcomes in a mouse model of alcohol use disorders. Physiol Behav 2023; 259:114037. [PMID: 36427542 DOI: 10.1016/j.physbeh.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite the teratogenic effects of alcohol, little is known about the safety of pharmacotherapies such as acamprosate for the treatment of alcohol use disorders in pregnancy. The aims of this study were to investigate, in a mouse model, the effects of maternally administered acamprosate on maternal and neonatal health, offspring neurodevelopment and behaviour, as well as examine whether acamprosate reduces the neurological harm associated with alcohol consumption in pregnancy. METHODS Dams were randomly allocated to one of four treatment groups: (i) control (water), (ii) acamprosate (1.6 g/L), (iii) alcohol (5% v/v) or (iv) acamprosate and alcohol (1.6 g/L; 5% v/v ethanol) and exposed from 2-weeks pre-pregnancy until postpartum day 7. Gestational outcomes including litter size and sex ratio were assessed, in addition to early-life markers of neurodevelopment. At 8 weeks of age, motor coordination, anxiety, locomotion, and memory of the adult offspring were also examined. RESULTS Exposure to acamprosate did not affect maternal and birth outcomes (mating success, gestational weight gain, litter size, sex ratio), neonatal outcomes (head and body length, postnatal weight) or neurodevelopmental markers (righting reflex and negative geotaxis). Acamprosate exposure did not affect offspring motor control, locomotion or anxiety, however the effects on short-term memory remain uncertain. Prenatal alcohol exposed offspring exhibited various alterations, such as lower postnatal weight, smaller head (p = 0.04) and body lengths (p = 0.046) at postnatal day 70 (males only), increased negative geotaxis speed (p = 0.03), an increased time spent in the inner zone of the open field (p = 0.02). Acamprosate mitigated the effects of alcohol for negative geotaxis at postnatal day 7 (p = 0.01) and female offspring weight at postnatal day 70 (p = 0.03). CONCLUSIONS Overall, we show that prenatal acamprosate exposure was not associated with poor maternal or neonatal health outcomes or impaired neurodevelopment and behaviour. However, acamprosate's effects on short-term memory remain uncertain. We present preliminary evidence to suggest acamprosate displayed some neuroprotective effects against damage caused by in utero alcohol exposure.
Collapse
Affiliation(s)
- Ebony Quintrell
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin Wyrwoll
- Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexander Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Erin Kelty
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia.
| |
Collapse
|