1
|
Palacino-Rodríguez F, Palacino DA, Penagos Arevalo A, Cordero-Rivera A. Demography and Behaviour of Teinopodagrion oscillans (Odonata: Megapodagrionidae) in a Protected Area of the Colombian Andean Region. INSECTS 2024; 15:125. [PMID: 38392544 PMCID: PMC10889271 DOI: 10.3390/insects15020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The demography and behaviour of Teinopodagrion oscillans was studied in a protected area in the Andean region of Colombia. Adult damselflies were individually marked, and using their recapture histories, we estimated survival, longevity, sex ratio, and population size using Cormack-Jolly-Seber models. Other aspects of their behaviour were recorded. Survival, recapture, and lifespan (14.1 ± 0.59 days) were similar for both sexes and all age groups. Mature males were larger, and the distance from the water was similar for all individuals. The most supported model was the time-dependent model for survival and recapture. This suggests that weather variations affect the demography of this population in a significant way. Individuals exhibited high fidelity to their site perch, perching with open wings near water on a variety of perches. Mature males make short flights from the perch to intercept conspecific and interspecific males and to hunt prey. The tandem position was formed on macrophytes, and then the pair flew away. Oviposition lasted for 11.23 min on average, with the females ovipositing by abdomen submersion. Our results offer insights into the demographic characteristics and behaviour of this species, providing crucial information for the short- and long-term, from the demography of one species to the conservation of ecosystems of the Andean region.
Collapse
Affiliation(s)
- Fredy Palacino-Rodríguez
- Etology Section, Faculty of Sciences, Republic University, Montevideo 11200, Uruguay
- Research Group on Odonata and Other Arthropods in Colombia and the Neotropics (GINOCO), Sesquilé 251057, Colombia
| | - Diego Andres Palacino
- Research Group on Odonata and Other Arthropods in Colombia and the Neotropics (GINOCO), Sesquilé 251057, Colombia
| | - Andrea Penagos Arevalo
- Research Group on Odonata and Other Arthropods in Colombia and the Neotropics (GINOCO), Sesquilé 251057, Colombia
| | - Adolfo Cordero-Rivera
- ECOEVO Lab, E. E. Forestal, Campus Universitario A Xunqueira s/n, Universidade de Vigo, 36005 Pontevedra, Spain
| |
Collapse
|
2
|
Lin XQ, Hou YM, Yang WZ, Shi SC, Zheng PY, Shih CK, Jiang JP, Xie F, Jiang JP, Xie F. A wide hybrid zone mediated by precipitation contributed to confused geographical structure of Scutiger boulengeri. Zool Res 2023; 44:3-19. [PMID: 36171715 PMCID: PMC9841186 DOI: 10.24272/j.issn.2095-8137.2022.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Confused geographical structure of a population and mitonuclear discordance are shaped by a combination of rapid changes in population demographics and shifts in ecology. In this study, we generated a time-calibrated phylogeny of Scutiger boulengeri, an endemic Xizang alpine toad occurring in mountain streams on the Qinghai-Xizang (Tibet) Plateau (QTP). Based on three mitochondrial DNA (mtDNA) genes, eight clades were assigned to three deeply divergent lineages. Analysis of nuclear DNA (nuDNA) genes revealed three distinct clusters without geographic structure, indicating significantly high rates of gene flow. Coalescent theory framework analysis (approximate Bayesian computation model DIYABC and Migrate-N) suggested that divergence of the main intraspecific clusters was the result of hybridization after secondary contact in the Holocene around 0.59 million years ago (Ma). The ratio of mtDNA F ST (fixation index) to nuDNA F ST was 2.3, thus failing to show male-biased dispersal. Geographic cline analysis showed that a wide hybrid zone was initially established in southwestern China, without significant reproductive isolation but with strong introgression in S. boulengeri, suggesting high hybrid fitness. Furthermore, mtDNA genes exhibited isolation by distance (IBD) while nuDNA genes exhibited significant isolation by environment (IBE). Results suggested that mitonuclear discordance may have initially been caused by geographic isolation, followed by precipitation-mediated hybridization, producing a wide hybrid zone and geographic structure confusion of nuDNA genes in S. boulengeri. This study indicated that complicated historical processes may have led to specific genetic patterns, with a specific climate factor facilitating gene flow in the system.
Collapse
Affiliation(s)
- Xiu-Qin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Meng Hou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Zhao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Chao Shi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu-Yang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chung-Kun Shih
- College of Life Sciences, Capital Normal University, Beijing 100048, China,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013–7012, USA
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China,Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China,Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China,E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Geographical Variation in Body Size and the Bergmann's Rule in Andrew's Toad ( Bufo andrewsi). BIOLOGY 2022; 11:biology11121766. [PMID: 36552274 PMCID: PMC9775554 DOI: 10.3390/biology11121766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Environmental variation likely modifies the life-history traits of vertebrates. As ectothermic vertebrates, it is possible that the body size of amphibians is impacted by environmental conditions. Here, we firstly quantified age and body size variation in the Andrew's toad (Bufo andrewsi) across the Hengduan Mountains. Then, we examined the environmental correlates of this variation based on the literature and our unpublished data on the age and body size of the Andrew's toad from 31 populations distributed in southwestern China. Although our analysis revealed significant variations in age and body size across B. andrewsi populations, neither latitude nor altitude correlated with this variability in age and body size. We found that age at sexual maturity, mean age, and longevity increased with decreasing annual mean temperature, whereas age at sexual maturity increased with decreasing temperature seasonality, implying that temperature was a crucial habitat characteristic that modulated age structure traits. Moreover, we revealed positive associations between age structure and UV-B seasonality, and negative relationships between both mean age and longevity and precipitation seasonality. We also found that body size increased with increasing precipitation in the driest month and UV-B seasonality. However, body size did not covary with temperature, signifying no support for Bergmann's rule. These findings help us to understand amphibians' abilities to adapt to environmental variation, which is particularly important in order to provide a theorical basis for their conservation.
Collapse
|
4
|
Labisko J, Bunbury N, Griffiths RA, Groombridge JJ, Chong-Seng L, Bradfield KS, Streicher JW. Survival of climate warming through niche shifts: Evidence from frogs on tropical islands. GLOBAL CHANGE BIOLOGY 2022; 28:1268-1286. [PMID: 34874078 DOI: 10.1111/gcb.15997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
How will organisms cope when forced into warmer-than-preferred thermal environments? This is a key question facing our ability to monitor and manage biota as average annual temperatures increase, and is of particular concern for range-limited terrestrial species unable to track their preferred climatic envelope. Being ectothermic, desiccation prone, and often spatially restricted, island-inhabiting tropical amphibians exemplify this scenario. Pre-Anthropocene case studies of how insular amphibian populations responded to the enforced occupation of warmer-than-ancestral habitats may add a valuable, but currently lacking, perspective. We studied a population of frogs from the Seychelles endemic family Sooglossidae which, due to historic sea-level rise, have been forced to occupy a significantly warmer island (Praslin) than their ancestors and close living relatives. Evidence from thermal activity patterns, bioacoustics, body size distributions, and ancestral state estimations suggest that this population shifted its thermal niche in response to restricted opportunities for elevational dispersal. Relative to conspecifics, Praslin sooglossids also have divergent nuclear genotypes and call characters, a finding consistent with adaptation causing speciation in a novel thermal environment. Using an evolutionary perspective, our study reveals that some tropical amphibians have survived episodes of historic warming without the aid of dispersal and therefore may have the capacity to adapt to the currently warming climate. However, two otherwise co-distributed sooglossid species are absent from Praslin, and the deep evolutionary divergence between the frogs on Praslin and their closest extant relatives (~8 million years) may have allowed for gradual thermal adaptation and speciation. Thus, local extinction is still a likely outcome for tropical frogs experiencing warming climates in the absence of dispersal corridors to thermal refugia.
Collapse
Affiliation(s)
- Jim Labisko
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
- Island Biodiversity and Conservation centre, University of Seychelles, Victoria, Seychelles
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Richard A Griffiths
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Jim J Groombridge
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | | | | | | |
Collapse
|
5
|
Durán F, Méndez MA, Correa C. The Atacama toad (Rhinella atacamensis) exhibits an unusual clinal pattern of decreasing body size towards more arid environments. BMC ZOOL 2021; 6:25. [PMID: 37170376 PMCID: PMC10127348 DOI: 10.1186/s40850-021-00090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The causes of geographic variation of body size in ectotherms have generally been attributed to environmental variables. Research in amphibians has favored mechanisms that involve water availability as an explanation for the geographic variation of body size. However, there are few studies at intraspecific level on amphibians that inhabit desert or semi-desert environments, where hydric restrictions are stronger. Here, we describe and inquire as to the causes of the geographic variation of body size in the semi-desert toad Rhinella atacamensis, a terrestrial anuran that is distributed over 750 km along a latitudinal aridity gradient from the southern extreme of the Atacama Desert to the Mediterranean region of central Chile. We measured the snout-vent length of 315 adults from 11 representative localities of the entire distribution of the species. Then, using an information-theoretic approach, we evaluate whether the data support eight ecogeographic hypotheses proposed in literature.
Results
Rhinella atacamensis exhibits a gradual pattern of decrease in adult body size towards the north of its distribution, where the climate is more arid, which conforms to a Bergmann’s cline. The best model showed that the data support the mean annual precipitation as predictor of body size, favoring the converse water availability hypothesis.
Conclusions
Most studies in amphibians show that adult size increases in arid environments, but we found a converse pattern to expected according to the hydric constraints imposed by this type of environment. The evidence in R. atacamensis favors the converse water availability hypothesis, whose mechanism proposes that the foraging activity determined by the precipitation gradient has produced the clinal pattern of body size variation. The variation of this trait could also be affected by the decreasing productivity that exists towards the north of the species distribution. In addition, we found evidence that both pattern and mechanism are independent of sex. Lastly, we suggest that behavioral traits, such as nocturnal habits, might also play an important role determining this differential response to aridity. Therefore, the support for the converse water availability hypothesis found in this study shows that amphibians can respond in different ways to water restrictions imposed by arid environments.
Collapse
|
6
|
Medina R, Wogan GOU, Bi K, Termignoni-García F, Bernal MH, Jaramillo-Correa JP, Wang IJ, Vázquez-Domínguez E. Phenotypic and genomic diversification with isolation by environment along elevational gradients in a neotropical treefrog. Mol Ecol 2021; 30:4062-4076. [PMID: 34160853 DOI: 10.1111/mec.16035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Abstract
Understanding how geographic and environmental heterogeneity drive local patterns of genetic variation is a major goal of ecological genomics and a key question in evolutionary biology. The tropical Andes and inter-Andean valleys are shaped by markedly heterogeneous landscapes, where species experience strong selective processes. We examined genome-wide SNP data together with behavioural and ecological traits (mating calls and body size) known to contribute to genetic isolation in anurans in the banana tree-dwelling frog, Boana platanera, distributed across an environmental gradient in Central Colombia (northern South America). Here, we analysed the relationships between environmentally (temperature and precipitation) associated genetic and phenotypic differentiation and the potential drivers of isolation by environment along an elevation gradient. We identified candidate SNPs associated with temperature and body size, which follow a clinal pattern of genome-wide differentiation tightly coupled with phenotypic variation: as elevation increases, B. platanera exhibits larger body size and longer call duration with more pulses but lower pulse rate and frequency. Thus, the environmental landscape has rendered a scenario where isolation by environment and candidate loci show concordance with phenotypic divergence in this tropical frog along an elevation gradient in the Colombian Andes. Our study sets the basis for evaluating the role of temperature in the genetic structure and local adaptation in tropical treefrogs and its putative effect on life cycle (embryos, tadpoles, adults) along elevation gradients.
Collapse
Affiliation(s)
- Ricardo Medina
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.,Grupo de Herpetología, Eco-Fisiología & Etología, Departamento de Biología, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia
| | - Guinevere O U Wogan
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, USA.,Department of Integrative Biology, Oklahoma State University, Oklahoma, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA.,Computational Genomics Resource Laboratory (CGRL, California Institute for Quantitative Biosciences (QB3, University of California, Berkeley, California, USA
| | - Flavia Termignoni-García
- Department of Organismic and Evolutionary Biology (OEB, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Hernando Bernal
- Grupo de Herpetología, Eco-Fisiología & Etología, Departamento de Biología, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia
| | - Juan P Jaramillo-Correa
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, USA
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
7
|
Pupin NC, Brusquetti F, Haddad CFB. Seasonality drives body size variation in a widely distributed Neotropical treefrog. J Zool (1987) 2020. [DOI: 10.1111/jzo.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. C. Pupin
- Departamento de Biodiversidade Instituto de Biociências e Centro de Aquicultura (CAUNESP) Universidade Estadual Paulista (UNESP), Campus Rio Claro Rio Claro São Paulo Brazil
| | - F. Brusquetti
- Instituto de Investigación Biológica del Paraguay (IIBP) Asunción Paraguay
| | - C. F. B. Haddad
- Departamento de Biodiversidade Instituto de Biociências e Centro de Aquicultura (CAUNESP) Universidade Estadual Paulista (UNESP), Campus Rio Claro Rio Claro São Paulo Brazil
| |
Collapse
|
8
|
Annibale FS, de Sousa VT, da Silva FR, Murphy CG. Geographic Variation in the Acoustic Signals of Dendropsophus nanus (Boulenger 1889) (Anura: Hylidae). HERPETOLOGICA 2020. [DOI: 10.1655/herpetologica-d-19-00046.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fabiane S. Annibale
- PPG Biologia Animal, Departamento de Zoologia e Botânica, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), São José do Rio Preto, SP 15054-000, Brasil
| | - Verônica T.T. de Sousa
- PPG Ecologia e Evolução, Departamento de Ecologia, Universidade Federal de Goiás (UFG), Goiânia, GO 74690-900, Brasil
| | - Fernando R. da Silva
- Laboratório de Ecologia Teórica: Integrando Tempo, Biologia e Espaço (LET.IT.BE), Departamento de Ciências Ambientais, Universidade Federal de São Carlos (UFSCar), Sorocaba, SP 18052-780, Brasil
| | | |
Collapse
|
9
|
Gouveia SF, Bovo RP, Rubalcaba JG, Da Silva FR, Maciel NM, Andrade DV, Martinez PA. Biophysical Modeling of Water Economy Can Explain Geographic Gradient of Body Size in Anurans. Am Nat 2018; 193:51-58. [PMID: 30624109 DOI: 10.1086/700833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Geographical gradients of body size express climate-driven constraints on animals, but whether they exist and what causes them in ectotherms remains contentious. For amphibians, the water conservation hypothesis posits that larger bodies reduce evaporative water loss (EWL) along dehydrating gradients. To address this hypothesis mechanistically, we build on well-established biophysical equations of water exchange in anurans to propose a state-transition model that predicts an increase of either body size or resistance to EWL as alternative specialization along dehydrating gradients. The model predicts that species whose water economy is more sensitive to variation in body size than to variation in resistance to EWL should increase in size in response to increasing potential evapotranspiration (PET). To evaluate the model predictions, we combine physiological measurements of resistance to EWL with geographic data of body size for four different anuran species. Only one species, Dendropsophus minutus, was predicted to exhibit a positive body size-PET relationship. Results were as predicted for all cases, with one species-Boana faber-showing a negative relationship. Based on an empirically verified mathematical model, we show that clines of body size among anurans depend on the current values of those traits and emerge as an advantage for water conservation. Our model offers a mechanistic and compelling explanation for the cause and variation of gradients of body size in anurans.
Collapse
|
10
|
Wei X, Yan L, Zhao C, Zhang Y, Xu Y, Cai B, Jiang N, Huang Y. Geographic variation in body size and its relationship with environmental gradients in the Oriental Garden Lizard, Calotes versicolor. Ecol Evol 2018; 8:4443-4454. [PMID: 29760886 PMCID: PMC5938448 DOI: 10.1002/ece3.4007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor, we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor (F23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.
Collapse
Affiliation(s)
- Xiaomei Wei
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China.,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement Nanning Guangxi China
| | - Linmiao Yan
- Guangxi Dongli Mechanic School Nanning Guangxi China
| | - Chengjian Zhao
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Yueyun Zhang
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Yongli Xu
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Bo Cai
- Department of Herpetology Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Ni Jiang
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Yong Huang
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| |
Collapse
|
11
|
Guerra V, Llusia D, Gambale PG, de Morais AR, Márquez R, Bastos RP. The advertisement calls of Brazilian anurans: Historical review, current knowledge and future directions. PLoS One 2018; 13:e0191691. [PMID: 29381750 PMCID: PMC5790252 DOI: 10.1371/journal.pone.0191691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022] Open
Abstract
Advertisement calls are often used as essential basic information in studies of animal behaviour, ecology, evolution, conservation, taxonomy or biodiversity inventories. Yet the description of this type of acoustic signals is far to be completed, especially in tropical regions, and is frequently non-standardized or limited in information, restricting the application of bioacoustics in science. Here we conducted a scientometric review of the described adverstisement calls of anuran species of Brazil, the world richest territory in anurans, to evaluate the amount, standard and trends of the knowledge on this key life-history trait and to identify gaps and directions for future research strategies. Based on our review, 607 studies have been published between 1960 to 2016 describing the calls of 719 Brazilian anuran species (68.8% of all species), a publication rate of 10.6 descriptions per year. From each of these studies, thirty-one variables were recorded and examined with descriptive and inferential statistics. In spite of an exponential rise over the last six decades in the number of studies, described calls, and quantity of published metadata, as revealed by regression models, clear shortfalls were identified with regard to anuran families, biomes, and categories of threat. More than 55% of these species belong to the two richest families, Hylidae or Leptodactylidae. The lowest percentage of species with described calls corresponds to the most diverse biomes, namely Atlantic Forest (65.1%) and Amazon (71.5%), and to the IUCN categories of threat (56.8%), relative to the less-than-threatened categories (74.3%). Moreover, only 52.3% of the species have some of its calls deposited in the main scientific sound collections. Our findings evidence remarkable knowledge gaps on advertisement calls of Brazilian anuran species, emphasizing the need of further efforts in standardizing and increasing the description of anuran calls for their application in studies of the behaviour, ecology, biogeography or taxonomy of the species.
Collapse
Affiliation(s)
- Vinicius Guerra
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), CEP: 87020-900, Maringá, Paraná, Brazil
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
- * E-mail:
| | - Diego Llusia
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, Madrid, Spain
| | - Priscilla Guedes Gambale
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
- Universidade Estadual do Mato Grosso do Sul, R. General Mendes de Moraes, Jardim Aeroporto, CEP 79804-970, Coxim, Mato Grosso do Sul, Brazil
| | | | - Rafael Márquez
- Fonoteca Zoológica, Departamento de Biodiversidad y Biología Evolutiva Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Rogério Pereira Bastos
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
| |
Collapse
|
12
|
Goldberg J, Cardozo D, Brusquetti F, Bueno Villafañe D, Caballero Gini A, Bianchi C. Body size variation and sexual size dimorphism across climatic gradients in the widespread treefrogScinax fuscovarius(Anura, Hylidae). AUSTRAL ECOL 2017. [DOI: 10.1111/aec.12532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Javier Goldberg
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET); CCT-Salta; 9 de Julio 14 4405 Rosario de Lerma, Salta Argentina
| | - Darío Cardozo
- Laboratorio de Genética Evolutiva; Instituto de Biología Subtropical (IBS UNaM/CONICET); Posadas Misiones Argentina
| | | | | | | | - Carlos Bianchi
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET); CCT-Salta; 9 de Julio 14 4405 Rosario de Lerma, Salta Argentina
| |
Collapse
|