1
|
Ostwald MM, da Silva CRB, Seltmann KC. How does climate change impact social bees and bee sociality? J Anim Ecol 2024; 93:1610-1621. [PMID: 39101348 DOI: 10.1111/1365-2656.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
Climatic factors are known to shape the expression of social behaviours. Likewise, variation in social behaviour can dictate climate responses. Understanding interactions between climate and sociality is crucial for forecasting vulnerability and resilience to climate change across animal taxa. These interactions are particularly relevant for taxa like bees that exhibit a broad diversity of social states. An emerging body of literature aims to quantify bee responses to environmental change with respect to variation in key functional traits, including sociality. Additionally, decades of research on environmental drivers of social evolution may prove fruitful for predicting shifts in the costs and benefits of social strategies under climate change. In this review, we explore these findings to ask two interconnected questions: (a) how does sociality mediate vulnerability to climate change, and (b) how might climate change impact social organisation in bees? We highlight traits that intersect with bee sociality that may confer resilience to climate change (e.g. extended activity periods, diet breadth, behavioural thermoregulation) and we generate predictions about the impacts of climate change on the expression and distribution of social phenotypes in bees. The social evolutionary consequences of climate change will be complex and heterogeneous, depending on such factors as local climate and plasticity of social traits. Many contexts will see an increase in the frequency of eusocial nesting as warming temperatures accelerate development and expand the temporal window for rearing a worker brood. More broadly, climate-mediated shifts in the abiotic and biotic selective environments will alter the costs and benefits of social living in different contexts, with cascading impacts at the population, community and ecosystem levels.
Collapse
Affiliation(s)
- Madeleine M Ostwald
- Cheadle Center for Biodiversity & Ecological Restoration, University of California, Santa Barbara, California, USA
| | - Carmen R B da Silva
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katja C Seltmann
- Cheadle Center for Biodiversity & Ecological Restoration, University of California, Santa Barbara, California, USA
| |
Collapse
|
2
|
Zapata-Hernández G, Gajardo-Rojas M, Calderón-Seguel M, Muñoz AA, Yáñez KP, Requier F, Fontúrbel FE, Ormeño-Arriagada PI, Arrieta H. Advances and knowledge gaps on climate change impacts on honey bees and beekeeping: A systematic review. GLOBAL CHANGE BIOLOGY 2024; 30:e17219. [PMID: 38450832 DOI: 10.1111/gcb.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.
Collapse
Affiliation(s)
- Germán Zapata-Hernández
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Martina Gajardo-Rojas
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matías Calderón-Seguel
- Departamento de Ciencias Sociales, Facultad de Ciencias Sociales, Universidad de Tarapacá, Iquique, Chile
| | - Ariel A Muñoz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Ciencia del Clima y la Resiliencia, Santiago, Chile
| | - Karen P Yáñez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fabrice Requier
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Francisco E Fontúrbel
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pablo I Ormeño-Arriagada
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Héctor Arrieta
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Andrew NR. Austral Ecology
Editorial Volume 47 Issue 7. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Nigel R. Andrew
- University of New England Armidale New South Wales Australia
| |
Collapse
|