1
|
Gould ML, Downes NJ, Woolley AG, Hussaini HM, Ratnayake JT, Ali MA, Friedlander LT, Cooper PR. Harnessing the Regenerative Potential of Purified Bovine Dental Pulp and Dentin Extracellular Matrices in a Chitosan/Alginate Hydrogel. Macromol Biosci 2024:e2400254. [PMID: 38938070 DOI: 10.1002/mabi.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Indexed: 06/29/2024]
Abstract
When a tooth is diseased or damaged through caries, bioactive molecules are liberated from the pulp and dentin as part of the natural response to injury and these are key molecules for stimulating stem cell responses for tissue repair. Incorporation of these extracellular-matrix (ECM)-derived molecules into a hydrogel model can mimic in vivo conditions to enable dentin-pulp complex regeneration. Here, a chitosan/alginate (C/A) hydrogel is developed to sequester bovine ECM extracts. Human dental pulp cells (hDPCs) are cultured with these constructs and proliferation and cytotoxicity assays confirm that these C/A hydrogels are bioactive. Sequential z-axis fluorescent imaging visualizes hDPCs protruding into the hydrogel as it degraded. Alizarin red S staining shows that hDPCs cultured with the hydrogels display increased calcium-ion deposition, with dentin ECM stimulating the highest levels. Alkaline phosphatase activity is increased, as is expression of transforming growth factor-beta as demonstrated using immunocytochemistry. Directional analysis following phase contrast kinetic image capture demonstrates that both dentin and pulp ECM molecules act as chemoattractants for hDPCs. Data from this study demonstrate that purified ECM from dental pulp and dentin when delivered in a C/A hydrogel stimulates dental tissue repair processes in vitro.
Collapse
Affiliation(s)
- Maree L Gould
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Nerida J Downes
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Adele G Woolley
- Maurice Wilkins Centre for Biodiscovery, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Haizal M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
- Faculty of Dental Medicine, University of Airlangga, Surabaya, 60132, Indonesia
| | - Jithendra T Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Mohammad Azam Ali
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Lara T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
2
|
de Paula KDS, Dos Reis-Prado AH, de Jesus WP, Goto J, de Arantes LC, Verçosa M, Cintra LTA, Ervolino E, Szawka RE, Crovace MC, de Mesquita RA, Benetti F. Final irrigation with bioglass solution in regenerative endodontic procedure induces tissue formation inside the root canals, collagen maturation, proliferation cell and presence of osteocalcin. Int Endod J 2024; 57:586-600. [PMID: 38323923 DOI: 10.1111/iej.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/01/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024]
Abstract
AIM To evaluate the influence of an experimental solution of cobalt-doped F18 bioactive glass (F18Co) on tissue repair following regenerative endodontic procedure (REP) in rat molars. METHODOLOGY The F18Co solution was prepared at a ratio of 1:5 F18Co powder to distilled water. The right or left upper first molars of 12 Wistar rats were used, where the pulps were exposed, removed, and irrigated with 2.5% sodium hypochlorite (NaOCl), followed by 17% ethylenediaminetetraacetic acid (EDTA) (5 min each). Subsequently, the molars were divided into two groups (n = 6): REP-SS and REP-F18Co, where they received a final irrigation (5 min) with saline solution (SS) or F18Co solution, respectively. Then, intracanal bleeding was induced, and the tooth was sealed. Untreated molars were used as controls (n = 3). At 21 days, the rats were euthanized, and the specimens were processed for analysis of mineralized tissue and soft tissue formation inside the root canal using haematoxylin-eosin. The presence and maturation of collagen were evaluated by Masson's trichrome and picrosirius red staining. Immunolabelling analyses of proliferating cell nuclear antigen (PCNA) and osteocalcin (OCN) were performed. The data were submitted to the Mann-Whitney U-test (p < .05). RESULTS There was a similar formation of mineralized tissue in thickness and length in REP-SS and REP-F18Co groups (p > .05). Regarding the presence of newly formed soft tissue, most specimens of the REP-F18Co had tissue formation up to the cervical third of the canal, whilst the REP-SS specimens showed formation up to the middle third (p < .05), and there was higher maturation of collagen in REP-F18Co (p < .05). The number of PCNA-positive cells found in the apical third of the root canal was significantly higher in the F18Co group, as well as the OCN immunolabelling, which was severe in most specimens of REP-F18Co, and low in most specimens of REP-SS. CONCLUSION The final irrigation with F18Co bioactive glass solution in REP did not influence mineralized tissue formation but induced soft tissue formation inside the root canals, with higher collagen maturation, and an increase in PCNA-positive cells and OCN immunolabelling.
Collapse
Affiliation(s)
- Kiani Dos Santos de Paula
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | | | - Witalo Pereira de Jesus
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | - Juliana Goto
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba-SP, Brazil
| | - Lara Cancella de Arantes
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | - Marina Verçosa
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | | | - Edilson Ervolino
- Department of Basic Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba-SP, Brazil
| | - Raphael Escorsim Szawka
- Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Murilo Camuri Crovace
- Department of Materials Engineering, State University of São Carlos (UFSCar), Bioactive Materials Laboratory (LMBio), São Carlos-SP, Brazil
| | - Ricardo Alves de Mesquita
- Oral Pathology and Surgery, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| |
Collapse
|
3
|
Huang Q, Sun Y, Huang W, Zhang F, He H, He Y, Huang F. FTO Positively Regulates Odontoblastic Differentiation via SMOC2 in Human Stem Cells from the Apical Papilla under Inflammatory Microenvironment. Int J Mol Sci 2024; 25:4045. [PMID: 38612855 PMCID: PMC11012055 DOI: 10.3390/ijms25074045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.
Collapse
Affiliation(s)
- Qi Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yumei Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
4
|
Montenegro Raudales JL, Okuwa Y, Honda M. Dental Pulp Cell Transplantation Combined with Regenerative Endodontic Procedures Promotes Dentin Matrix Formation in Mature Mouse Molars. Cells 2024; 13:348. [PMID: 38391961 PMCID: PMC10886544 DOI: 10.3390/cells13040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Regenerative endodontic procedures (REPs) are promising for dental pulp tissue regeneration; however, their application in permanent teeth remains challenging. We assessed the potential combination of an REP and local dental pulp cell (DPC) transplantation in the mature molars of C57BL/6 mice with (REP + DPC group) or without (REP group) transplantation of DPCs from green fluorescent protein (GFP) transgenic mice. After 4 weeks, the regenerated tissue was evaluated by micro-computed tomography and histological analyses to detect odontoblasts, vasculogenesis, and neurogenesis. DPCs were assessed for mesenchymal and pluripotency markers. Four weeks after the REP, the molars showed no signs of periapical lesions, and both the REP and REP + DPC groups exhibited a pulp-like tissue composed of a cellular matrix with vessels surrounded by an eosin-stained acellular matrix that resembled hard tissue. However, the REP + DPC group had a broader cellular matrix and uniquely contained odontoblast-like cells co-expressing GFP. Vasculogenesis and neurogenesis were detected in both groups, with the former being more prominent in the REP + DPC group. Overall, the REP was achieved in mature mouse molars and DPC transplantation improved the outcomes by inducing the formation of odontoblast-like cells and greater vasculogenesis.
Collapse
Affiliation(s)
- Jorge Luis Montenegro Raudales
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan; (Y.O.); (M.H.)
| | | | | |
Collapse
|
5
|
Caviedes-Bucheli J, Muñoz-Alvear HD, Lopez-Moncayo LF, Narvaez-Hidalgo A, Zambrano-Guerrero L, Gaviño-Orduña JF, Portigliatti R, Gomez-Sosa JF, Munoz HR. Use of scaffolds and regenerative materials for the treatment of immature necrotic permanent teeth with periapical lesion: Umbrella review. Int Endod J 2022; 55:967-988. [PMID: 35821587 DOI: 10.1111/iej.13799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Current treatment of immature necrotic permanent teeth with a periapical lesion is regenerative endodontics, which is based on tissue engineering under the triade of stem cells, scaffolds and bioactive molecules. OBJECTIVES This Umbrella Review was aimed to evaluate the success of scaffold and regenerative materials used for the treatment of these teeth, in terms of apical closure, tooth length increase, widening of root canal walls, tissue vitality and periapical lesion repair. METHODS An extensive literature research was carried out in the Medline, ISI Web of Science, and Scopus databases for relevant systematic reviews matching the keyword search strategy. Based on inclusion and exclusion criteria, reviewers independently rated the quality of each study to determine their level of evidence. Methodological quality assessment of each article was obtained using A Measurement Tool to Assess Systematic Reviews (AMSTAR)-2 tool, and risk of bias was assessed with the Risk of Bias in Systematic Reviews (ROBIS) tool. RESULTS After removing duplicates, 155 articles were found; from which 133 were excluded for being non-relevant and 15 other due to exclusion criteria. One more was discarded after methodological quality evaluation, for a total of six articles remaining. The most common scaffold used was the blood clot, others used were poly lactic-co-glycolic acid and platelet-rich fibrin matrix. The most common regeneration material used was Mineral Trioxide Aggregate (MTA), followed by Biodentine. An increase in tooth length and widening of root canal walls were reported in all selected studies with different proportions, as well as periapical lesion repair. ROBIS analysis showed that only one article had low bias, two were classified as unclear bias, while the remaining three had high risk of bias. DISCUSSION An exhaustive literature search was carried out applying language filters, high-quality indexed journals, year of publication, which ensures the best quality articles were included. Blood clot was the most used scaffold as is the most easy to place inside the canal and does not require to extract blood from the patient. The use of MTA and Biodentine as sealing materials has been associated with thickening of canal walls, apical closure and reduced signs and symptoms of apical periodontitis. However, most of the included reviews assessed were case reports and only in a few of them were clinical trials included. There is also a lack of risk of bias analysis in most reviews. CONCLUSION The blood clot is the most common scaffold used for inducing regeneration during the treatment of immature necrotic teeth. Tooth length increase and widening of root canal walls are the most common criteria used in the studies as success indicators. MTA and Biodentine did not show differences in the results analysed. Quality assessment and bias risk evaluation showed that it is necessary to design better studies with rigorous methodology to recommend a trustable and predictable protocol for the treatment of immature necrotic permanent teeth with periapical lesions. REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO) CRD42021248404.
Collapse
Affiliation(s)
| | | | | | | | | | - José F Gaviño-Orduña
- Odonto-Stomatology Department, School of Dentistry, Universidad de Barcelona, Barcelona, Spain
| | | | - Jose F Gomez-Sosa
- Endodontics Department, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hugo R Munoz
- Endodontics Department, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| |
Collapse
|
6
|
Abstract
There have been published regenerative endodontic protocols for treating immature teeth in young patients, but there are no clinical considerations for the adult teeth. The goal of the present review is to propose a specific clinical protocol for both mature and immature adult teeth with necrotic pulps. Research was performed from January to April of 2021. From the 539 studies identified through the initial search, 23 studies were qualified for the final analysis (3 randomized controlled trials and 20 case reports). The results in mature adult teeth indicate a success rate of 96.35 and 100% in bone healing through the randomized controlled trials and case reports, respectively; 100% in absence of clinical symptoms, and 58 and 62.5% in positive response to sensibility tests. The success rate in the case reports in teeth with open apex reported a 61.5% of root development, 100% of bone healing, 96.15% of absence of clinical symptoms, and 43.7% of positive response to sensibility tests. The current evidence is scarce but emerging, so REPs may be a promising alternative for treating adult necrotic teeth. The clinical protocol proposed is based on the evidence available and age considerations, and should be updated in the future.
Collapse
|
7
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
8
|
Islam R, Toida Y, Chen F, Tanaka T, Inoue S, Kitamura T, Yoshida Y, Chowdhury AFMA, Ahmed HMA, Sano H. Histological evaluation of a novel phosphorylated pullulan-based pulp capping material: An in vivo study on rat molars. Int Endod J 2021; 54:1902-1914. [PMID: 34096634 DOI: 10.1111/iej.13587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
AIM To evaluate the dental pulp response to a novel mineral trioxide aggregate containing phosphorylated pullulan (MTAPPL) in rats after direct pulp capping. METHODS Ninety-six cavities were prepared in the maxillary first molars of 56 male Wistar rats. The dental pulps were intentionally exposed and randomly divided into four groups according to the application of pulp capping materials: MTAPPL; phosphorylated pullulan (PPL); a conventional MTA (Nex-Cem MTA, NCMTA; positive control); and Super-Bond (SB; negative control). All cavities were restored with SB and observed for pulpal responses at 1-, 3-, 7- and 28-day intervals using a histological scoring system. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-test with Bonferroni's correction, and the level of significance was set at 0.05. DMP1 and CD34 antigen were used to evaluate odontoblast differentiation and pulpal vascularization, respectively. RESULTS On day 1, mild inflammatory cells were present in MTAPPL and NCMTA groups; fewer inflammatory cells were present in the PPL, whereas SB was associated with a mild-to-moderate inflammatory response. A significant difference was observed between PPL and SB (p < .05). No mineralized tissue deposition was observed. On day 3, moderate-to-severe inflammatory cells were present in PPL and SB, whereas MTAPPL and NCMTA had a mild inflammatory response. Initial mineralized tissue deposition was observed in the NCMTA, MTAPPL and SB. A significant difference was observed between MTAPPL and PPL (p < .05). On day 7, a thin layer of mineralized tissue was observed in all tested groups with no or mild inflammatory response. On day 28, no inflammatory response was observed in MTAPPL, whereas NCMTA, PPL and SB had mild inflammatory responses. A significant difference was observed between MTAPPL and SB (p < .05). Complete mineralized tissue barrier formation was observed in MTAPPL, NCMTA and PPL with no significant difference (p > .05). SB exhibited incomplete mineralized tissue barriers, significantly different from NCMTA, MTAPPL and PPL (p < .05). The staining with CD34 was positive in all the groups on all observation days. CONCLUSION The favourable pulpal responses and induction of mineralized tissue formation associated with MTAPPL indicate its potential application as a direct pulp capping material.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Yu Toida
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Fei Chen
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Toru Tanaka
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoshi Inoue
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Abu Faem Mohammad Almas Chowdhury
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan.,Department of Conservative Dentistry and Endodontics, Sapporo Dental College and Hospital, Dhaka, Bangladesh
| | - Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
9
|
Lopes LB, Neves JA, Botelho J, Machado V, Mendes JJ. Regenerative Endodontic Procedures: An Umbrella Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:754. [PMID: 33561086 PMCID: PMC7830213 DOI: 10.3390/ijerph18020754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
The Regenerative Endodontic Procedure (REP) is a biologically based method in which a damaged pulp-dentin complex is replaced by a new vital tissue. This umbrella review aimed to critically assess the available systematic reviews (SRs) on REP. An electronic database search was conducted (PubMed-Medline, CENTRAL, Scielo, Web of Science, and LILACS) until December 2020. Studies were included if they were an SR on REP. The Risk of Bias (RoB) of SRs was analyzed using the Measurement Tool to Assess SRs criteria 2 (AMSTAR2). The primary outcome was the methodological quality in each specific section of REP protocols and outcomes. From 403 entries, 29 SRs were included. Regarding the methodological quality, ten studies were of critically low, three of low, fourteen of moderate, and two were rated as high quality. The quality of evidence produced by the available SRs was not favorable. Future high standard SRs and well-designed clinical trials are warranted to better elucidate the clinical protocols and outcomes of REP.
Collapse
Affiliation(s)
- Luísa Bandeira Lopes
- Dental Pediatrics Department, Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (J.A.N.); (J.B.); (V.M.); (J.J.M.)
| | - João Albernaz Neves
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (J.A.N.); (J.B.); (V.M.); (J.J.M.)
- Endodontics Department, Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal
| | - João Botelho
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (J.A.N.); (J.B.); (V.M.); (J.J.M.)
- Evidenced-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (J.A.N.); (J.B.); (V.M.); (J.J.M.)
- Evidenced-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal
| | - José João Mendes
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (J.A.N.); (J.B.); (V.M.); (J.J.M.)
- Evidenced-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, 2829-511 Almada, Portugal
| |
Collapse
|
10
|
ÇİMEN C, ŞEN S, ŞENAY E, BEZGİN T. PRF USED AS A SCAFFOLD IN PULP REGENERATION: CASE SERIES. CUMHURIYET DENTAL JOURNAL 2021. [DOI: 10.7126/cumudj.833807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Abstract
A loss of organs or the destruction of tissue leaves wounds to which organisms and living things react differently. Their response depends on the extent of damage, the functional impairment and the biological potential of the organism. Some can completely regenerate lost body parts or tissues, whereas others react by forming scars in the sense of a tissue repair. Overall, the regenerative capacities of the human body are limited and only a few tissues are fully restored when injured. Dental tissues may suffer severe damage due to various influences such as caries or trauma; however, dental care aims at preserving unharmed structures and, thus, the functionality of the teeth. The dentin-pulp complex, a vital compound tissue that is enclosed by enamel, holds many important functions and is particularly worth protecting. It reacts physiologically to deleterious impacts with an interplay of regenerative and reparative processes to ensure its functionality and facilitate healing. While there were initially no biological treatment options available for the irreversible destruction of dentin or pulp, many promising approaches for endodontic regeneration based on the principles of tissue engineering have been developed in recent years. This review describes the regenerative and reparative processes of the dentin-pulp complex as well as the morphological criteria of possible healing results. Furthermore, it summarizes the current knowledge on tissue engineering of dentin and pulp, and potential future developments in this thriving field.
Collapse
|
12
|
Impact of remnant healthy pulp and apical tissue on outcomes after simulated regenerative endodontic procedure in rat molars. Sci Rep 2020; 10:20967. [PMID: 33262423 PMCID: PMC7708843 DOI: 10.1038/s41598-020-78022-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
When regenerative endodontic procedures (REPs) are performed on immature teeth diagnosed with pulp necrosis and apical periodontitis, various healing patterns occur. Furthermore, infected immature teeth with endodontic disorders often exhibit some remnant pulp and apical tissue. Therefore, this study investigated the impact of remnant healthy or fully functional pulp and apical tissue on healing patterns after REPs. Simulated REPs were performed on non-infected immature rat molars with different amounts of remnant pulp and apical tissue. Healing patterns in these teeth were assessed after 28 days. Teeth with 0.81–0.91 mm of remnant pulp healed with pulp-like tissue, dentin, and osteodentin-like dentin-associated mineralized tissue (OSD-DAMT); teeth with 0.60–0.63 mm of remnant pulp healed with pulp-like tissue and OSD-DAMT; teeth with 0.13–0.43 mm of remnant pulp healed with periodontal ligament (PDL)-like tissue, OSD-DAMT, and cementum-like dentin-associated mineralized tissue (CEM-DAMT); and teeth with disorganization of pulp and apical tissues at 0.15–0.38 mm beyond the root apex healed with PDL-like tissue, CEM-DAMT, and intracanal bone (IB). Loss of Hertwig’s epithelial root sheath was observed with IB formation. These results showed that four distinct healing patterns occurred after REPs, depending on the preoperative amount of remnant healthy pulp and apical tissue.
Collapse
|