1
|
Cortez T, Montenegro H, Coutinho LL, Regitano LCA, Andrade SCS. Molecular evolution and signatures of selective pressures on Bos, focusing on the Nelore breed (Bos indicus). PLoS One 2022; 17:e0279091. [PMID: 36548260 PMCID: PMC9778527 DOI: 10.1371/journal.pone.0279091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Evolutionary history leads to genome changes over time, especially for species that have experienced intense selective pressures over a short period. Here, we investigated the genomic evolution of Bos species by searching for potential selection signatures, focusing on Nelore, an economically relevant cattle breed in Brazil. We assessed the genomic processes determining the molecular evolution across Nelore and thirteen other related taxa by evaluating (i) amino acid sequence conservation, (ii) the dN/dS ratio, and (iii) gene families' turnover rate (λ). Low conserved regions potentially associated with fatty acid metabolism seem to reflect differences in meat fat content in taxa with different evolutionary histories. All Bos species presented genes under positive selection, especially B. indicus and Nelore, which include transport protein cobalamin, glycolipid metabolism, and hormone signaling. These findings could be explained by constant selective pressures to obtain higher immune resistance and efficient metabolism. The gene contraction rate across the Nelore + B. indicus branch was almost nine times higher than that in other lineages (λ = 0.01043 vs. 0.00121), indicating gene losses during the domestication process. Amino acid biosynthesis, reproductive and innate immune system-related pathways were associated with genes recognized within the most frequent rapidly evolving gene families and in genes under positive selection, supporting the substantial relevance of such traits from a domestication perspective. Our data provide new insights into how the genome may respond to intense artificial selection in distinct taxa, and reinforces the presence of selective pressures on traits potentially relevant for future animal breeding investments.
Collapse
Affiliation(s)
- Thainá Cortez
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo (USP), São Paulo, SP, Brazil
- * E-mail: (SCSA); (TC)
| | - Horácio Montenegro
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ), Piracicaba, SP, Brazil
| | - Luiz L. Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ), Piracicaba, SP, Brazil
| | - Luciana C. A. Regitano
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo (USP), São Paulo, SP, Brazil
- * E-mail: (SCSA); (TC)
| |
Collapse
|
2
|
Álvarez Cecco P, Rogberg Muñoz A, Balbi M, Bonamy M, Munilla S, Forneris NS, Peral García P, Cantet RJC, Giovambattista G, Fernández ME. Genome-wide scan for signatures of selection in the Brangus cattle genome. J Anim Breed Genet 2022; 139:679-694. [PMID: 35866697 DOI: 10.1111/jbg.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Brangus is a composite cattle breed developed with the objective of combining the advantages of Angus and Zebuine breeds (Brahman, mainly) in tropical climates. The aim of this work was to estimate breed composition both genome-wide and locally, at the chromosome level, and to uncover genomic regions evidencing positive selection in the Argentinean Brangus population/nucleus. To do so, we analysed marker data from 478 animals, including Brangus, Angus and Brahman. Average breed composition was 35.0% ± 9.6% of Brahman, lower than expected according to the theoretical fractions deduced by the usual cross-breeding practice in this breed. Local ancestry analysis evidenced that breed composition varies between chromosomes, ranging from 19.6% for BTA26 to 56.1% for BTA5. Using approaches based on allelic frequencies and linkage disequilibrium, genomic regions with putative selection signatures were identified in several chromosomes (BTA1, BTA5, BTA6 and BTA14). These regions harbour genes involved in horn development, growth, lipid metabolism, reproduction and immune response. We argue that the overlapping of a chromosome segment originated in one of the parental breeds and over-represented in the sample with the location of a signature of selection constitutes evidence of a selection process that has occurred in the breed since its take off in the 1950s. In this regard, our results could contribute to the understanding of the genetic mechanisms involved in cross-bred cattle adaptation and productivity in tropical environments.
Collapse
Affiliation(s)
- Paulo Álvarez Cecco
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrés Rogberg Muñoz
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Balbi
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Bonamy
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sebastián Munilla
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Soledad Forneris
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pilar Peral García
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rodolfo Juan Carlos Cantet
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Giovambattista
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Elena Fernández
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
4
|
Ma X, Cheng H, Liu Y, Sun L, Chen N, Jiang F, You W, Yang Z, Zhang B, Song E, Lei C. Assessing Genomic Diversity and Selective Pressures in Bohai Black Cattle Using Whole-Genome Sequencing Data. Animals (Basel) 2022; 12:ani12050665. [PMID: 35268233 PMCID: PMC8909316 DOI: 10.3390/ani12050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Bohai Black cattle are one of the indigenous black coat cattle breeds in China, which are famous for their excellent meat quality. Whole-genome sequencing technology has been extensively developed to study species genome genetic diversity, population structure, selection pressure, demographic events, etc. However, a limited number of studies have reported genomic diversity and selection pressures in Bohai Black cattle. The purpose of this study is to analyze population structure and genomic differences between Bohai Black cattle and five “core” cattle populations from all over the world, mainly oriented on the identification of selection signatures using whole-genome sequencing data. In addition, we identify a series of candidate genes that can potentially be related to black coat color, meat quality, immunity, and reproduction in this breed. This study provides valuable genomic resources and theoretical basis for the future breeding of Bohai Black cattle. Abstract Bohai Black cattle are one of the well-known cattle breeds with black coat color in China, which are cultivated for beef. However, no study has conducted a comprehensive analysis of genomic diversity and selective pressures in Bohai Black cattle. Here, we performed a comprehensive analysis of genomic variation in 10 Bohai Black cattle (five newly sequenced and five published) and the published whole-genome sequencing (WGS) data of 50 cattle representing five “core” cattle populations. The population structure analysis revealed that Bohai Black cattle harbored the ancestry with European taurine, Northeast Asian taurine, and Chinese indicine. The Bohai Black cattle demonstrated relatively high genomic diversity from the other cattle breeds, as indicated by the nucleotide diversity (pi), the expected heterozygosity (HE) and the observed heterozygosity (HO), the linkage disequilibrium (LD) decay, and runs of homozygosity (ROH). We identified 65 genes containing more than five non-synonymous SNPs (nsSNPs), and an enrichment analysis revealed the “ECM-receptor interaction” pathways associated with meat quality in Bohai Black cattle. Five methods (CLR, θπ, FST, θπ ratio, and XP-EHH) were used to find several pathways and genes carried selection signatures in Bohai Black cattle, including black coat color (MC1R), muscle development (ITGA9, ENAH, CAPG, ABI2, and ISLR), fat deposition (TBC1D1, CYB5R4, TUSC3, and EPS8), reproduction traits (SPIRE2, KHDRBS2, and FANCA), and immune system response (CD84, SLAMF1, SLAMF6, and CDK10). Taken together, our results provide a valuable resource for characterizing the uniqueness of Bohai Black cattle.
Collapse
Affiliation(s)
- Xiaohui Ma
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250100, China; (X.M.); (H.C.); (F.J.); (W.Y.)
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Y.L.); (L.S.); (N.C.)
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250100, China; (X.M.); (H.C.); (F.J.); (W.Y.)
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Y.L.); (L.S.); (N.C.)
| | - Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Y.L.); (L.S.); (N.C.)
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Y.L.); (L.S.); (N.C.)
| | - Fugui Jiang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250100, China; (X.M.); (H.C.); (F.J.); (W.Y.)
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250100, China; (X.M.); (H.C.); (F.J.); (W.Y.)
| | - Zhangang Yang
- HuaXing Bohai Black Cattle Co., Ltd., Binzhou 256600, China;
| | - Baoheng Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China;
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250100, China; (X.M.); (H.C.); (F.J.); (W.Y.)
- Correspondence: (E.S.); (C.L.); Tel.: +86-138-6415-6955 (E.S.); +86-135-7299-2159 (C.L.)
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Y.L.); (L.S.); (N.C.)
- Correspondence: (E.S.); (C.L.); Tel.: +86-138-6415-6955 (E.S.); +86-135-7299-2159 (C.L.)
| |
Collapse
|
5
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
6
|
Peripolli E, Reimer C, Ha NT, Geibel J, Machado MA, Panetto JCDC, do Egito AA, Baldi F, Simianer H, da Silva MVGB. Genome-wide detection of signatures of selection in indicine and Brazilian locally adapted taurine cattle breeds using whole-genome re-sequencing data. BMC Genomics 2020; 21:624. [PMID: 32917133 PMCID: PMC7488563 DOI: 10.1186/s12864-020-07035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cattle introduced by European conquerors during the Brazilian colonization period were exposed to a process of natural selection in different types of biomes throughout the country, leading to the development of locally adapted cattle breeds. In this study, whole-genome re-sequencing data from indicine and Brazilian locally adapted taurine cattle breeds were used to detect genomic regions under selective pressure. Within-population and cross-population statistics were combined separately in a single score using the de-correlated composite of multiple signals (DCMS) method. Putative sweep regions were revealed by assessing the top 1% of the empirical distribution generated by the DCMS statistics. RESULTS A total of 33,328,447 biallelic SNPs with an average read depth of 12.4X passed the hard filtering process and were used to access putative sweep regions. Admixture has occurred in some locally adapted taurine populations due to the introgression of exotic breeds. The genomic inbreeding coefficient based on runs of homozygosity (ROH) concurred with the populations' historical background. Signatures of selection retrieved from the DCMS statistics provided a comprehensive set of putative candidate genes and revealed QTLs disclosing cattle production traits and adaptation to the challenging environments. Additionally, several candidate regions overlapped with previous regions under selection described in the literature for other cattle breeds. CONCLUSION The current study reported putative sweep regions that can provide important insights to better understand the selective forces shaping the genome of the indicine and Brazilian locally adapted taurine cattle breeds. Such regions likely harbor traces of natural selection pressures by which these populations have been exposed and may elucidate footprints for adaptation to the challenging climatic conditions.
Collapse
Affiliation(s)
- Elisa Peripolli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, 14884-900, Brazil
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Johannes Geibel
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Marco Antonio Machado
- National Council for Scientific and Technological Development (CNPq), Lago Sul, 71605-001, Brazil
- Embrapa Dairy Cattle, Juiz de Fora, 36038-330, Brazil
| | | | | | - Fernando Baldi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, 14884-900, Brazil
| | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | | |
Collapse
|
7
|
Ventura RV, Brito LF, Oliveira GA, Daetwyler HD, Schenkel FS, Sargolzaei M, Vandervoort G, Fonseca e Silva F, Miller SP, Carvalho ME, Santana MHA, Mattos EC, Fonseca P, Eler JP, Ferraz JBS. A comprehensive comparison of high-density SNP panels and an alternative ultra-high-density panel for genomic analyses in Nellore cattle. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is evidence that some genotyping platforms might not work very well for Zebu cattle when compared with Taurine breeds. In addition, the availability of panels with low to moderate number of overlapping markers is a limitation for combining datasets for genomic evaluations, especially when animals are genotyped using different SNP panels. In the present study, we compared the performance of medium- and high-density (HD) commercially available panels and investigated the feasibility of developing an ultra-HD panel (SP) containing markers from an Illumina (HD_I) and an Affymetrix (HD_A) panels. The SP panel contained 1123442 SNPs. After performing SNP pruning on the basis of linkage disequilibrium, HD_A, HD_I and SP contained 429624, 365225 and 658770 markers distributed across the whole genome. The overall mean proportion of markers pruned out per chromosome for HD_A, HD_I and SP was 15.17%, 43.18%, 38.63% respectively. The HD_I panel presented the highest mean number of runs-of-homozygosity segments per animal (45.48%, an increment of 5.11% compared with SP) and longer segments, on average (3057.95 kb per segment), than did both HD_A and SP. HD_I also showed the highest mean number of SNPs per run-of-homozygosity segment. Consequently, the majority of animals presented the highest genomic inbreeding levels when genotyped using HD_I. The visual examination of marker distribution along the genome illustrated uncovered regions among the different panels. Haplotype-block comparison among panels and the average haplotype size constructed on the basis of HD_A were smaller than those from HD_I. The average number of SNPs per haplotype was different between HD_A and HD_I. Both HD_A and HD_I panels achieved high imputation accuracies when used as the lower-density panels for imputing to SP. However, imputation accuracy from HD_A to SP was greater than was imputation from HD_I to SP. Imputation from one HD panel to the other is also feasible. Low- and medium-density panels, composed of markers that are subsets of both HD_A and HD_I panels, should be developed to achieve better imputation accuracies to both HD levels. Therefore, the genomic analyses performed in the present study showed significant differences among the SNP panels used.
Collapse
|
8
|
Montes DE, Braz CU, Ribeiro AMF, Cavani L, Barbero MMD, Albuquerque LG, Curi RA, Oliveira HN. Selection signatures in candidate genes and QTL for reproductive traits in Nellore heifers. Anim Reprod Sci 2019; 207:1-8. [PMID: 31266598 DOI: 10.1016/j.anireprosci.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/18/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
The identification of selection signature genes may help to detect genomic regions that underwent artificial selection and contributed to phenotypic diversity. The aim of this study, therefore, was to detect selection signatures in candidate genes and quantitative trait locus (QTL) for reproductive traits in a Nellore population being selected for sexual precocity. A total of 2035 Nellore heifers, sourced from breeding programs focused on sexual precocity, were used. Candidate genes and some specific QTL related to reproductive traits were chosen based on published literature and Animal QTL databases, respectively, for investigation whether these regions were affected by selection. Selection signature DNA sequences were detected in the selected regions using the extended haplotype homozygosity (EHH) and relative extended haplotype homozygosity (REHH) methods. From 22,241 single nucleotide polymorphisms (SNPs) located in the candidate genes and QTL, 17,312 SNPs generated 2756 haplotype blocks. A total of 7518 EHH tests were analyzed using haplotypes with a frequency of more than 25%, for which there were 39 tests that were significant for REHH (P<0.01). Selection signature DNA sequences were detected that contained several QTLs for important reproductive traits in cattle, suggesting that reproductive traits may have been affected by selection for sexual precocity in this population. Forty-six genes were located in the selection signature regions, whereas 24 genes participated in important biological processes or pathways that may underlie sexual precocity. These results indicate there are possible molecular mechanisms related to sexual precocity in the Nellore breed.
Collapse
Affiliation(s)
- Donicer E Montes
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil; Universidad de Sucre, Facultad de Ciencias Agropecuarias, Departamento de Zootecnia, Sincelejo, Colombia
| | - Camila U Braz
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil
| | - André M F Ribeiro
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil
| | - Lígia Cavani
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil
| | - Marina M D Barbero
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil
| | - Lucia G Albuquerque
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil
| | - Rogério A Curi
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Campus (Botucatu), Department of Animal Improvement and Nutrition, Brazil
| | - Henrique N Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Campus (Jaboticabal), Department of Animal Science, Brazil.
| |
Collapse
|
9
|
Cardoso DF, de Albuquerque LG, Reimer C, Qanbari S, Erbe M, do Nascimento AV, Venturini GC, Scalez DCB, Baldi F, de Camargo GMF, Mercadante MEZ, do Santos Gonçalves Cyrillo JN, Simianer H, Tonhati H. Genome-wide scan reveals population stratification and footprints of recent selection in Nelore cattle. Genet Sel Evol 2018; 50:22. [PMID: 29720080 PMCID: PMC5930444 DOI: 10.1186/s12711-018-0381-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed at (1) assessing the genomic stratification of experimental lines of Nelore cattle that have experienced different selection regimes for growth traits, and (2) identifying genomic regions that have undergone recent selection. We used a sample of 763 animals genotyped with the Illumina BovineHD BeadChip, among which 674 animals originated from two lines that are maintained under directional selection for increased yearling body weight and 89 animals from a control line that is maintained under stabilizing selection. Results Multidimensional analysis of the genomic dissimilarity matrix and admixture analysis revealed a substantial level of population stratification between the directional selection lines and the stabilizing selection control line. Two of the three tests used to detect selection signatures (FST, XP-EHH and iHS) revealed six candidate regions with indications of selection, which strongly indicates truly positive signals. The set of identified candidate genes included several genes with roles that are functionally related to growth metabolism, such as COL14A1, CPT1C, CRH, TBC1D1, and XKR4. Conclusions The current study identified genetic stratification that resulted from almost four decades of divergent selection in an experimental Nelore population, and highlighted autosomal genomic regions that present patterns of recent selection. Our findings provide a basis for a better understanding of the metabolic mechanism that underlies the growth traits, which are modified by selection for yearling body weight. Electronic supplementary material The online version of this article (10.1186/s12711-018-0381-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diercles F Cardoso
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Lucia Galvão de Albuquerque
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.,National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Saber Qanbari
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Malena Erbe
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Institute for Animal Breeding, Bavarian State Research Center for Agriculture, Grub, Germany
| | - André V do Nascimento
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Guilherme C Venturini
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Daiane C Becker Scalez
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Fernando Baldi
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.,National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil
| | - Gregório M Ferreira de Camargo
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Maria E Zerlotti Mercadante
- National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil.,APTA Beef Cattle Center, Institute of Animal Science, Sertãozinho, SP, Brazil
| | | | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Humberto Tonhati
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.,National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil
| |
Collapse
|
10
|
Urbinati I, Stafuzza NB, Oliveira MT, Chud TCS, Higa RH, Regitano LCDA, de Alencar MM, Buzanskas ME, Munari DP. Selection signatures in Canchim beef cattle. J Anim Sci Biotechnol 2016; 7:29. [PMID: 27158491 PMCID: PMC4858954 DOI: 10.1186/s40104-016-0089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background Recent technological advances in genomics have allowed the genotyping of cattle through single nucleotide polymorphism (SNP) panels. High-density SNP panels possess greater genome coverage and are useful for the identification of conserved regions of the genome due to selection, known as selection signatures (SS). The SS are detectable by different methods, such as the extended haplotype homozygosity (EHH); and the integrated haplotype score (iHS), which is derived from the EHH. The aim of this study was to identify SS regions in Canchim cattle (composite breed), genotyped with high-density SNP panel. Results A total of 687,655 SNP markers and 396 samples remained for SS analysis after the genotype quality control. The iHS statistic for each marker was transformed into piHS for better interpretation of the results. Chromosomes BTA5 and BTA14 showed piHS > 5, with 39 and nine statistically significant SNPs (P < 0.00001), respectively. For the candidate selection regions, iHS values were computed across the genome and averaged within non-overlapping windows of 500 Kb. We have identified genes that play an important role in metabolism, melanin biosynthesis (pigmentation), and embryonic and bone development. Conclusions The observation of SS indicates that the selection processes performed in Canchim, as well as in the founder breeds (i.e. Charolais), are maintaining specific genomic regions, particularly on BTA5 and BTA14. These selection signatures regions could be associated with Canchim characterization. Electronic supplementary material The online version of this article (doi:10.1186/s40104-016-0089-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ismael Urbinati
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Nedenia Bonvino Stafuzza
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Marcos Túlio Oliveira
- Departamento de Tecnologia, UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Tatiane Cristina Seleguim Chud
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | | | | | | | - Marcos Eli Buzanskas
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Danísio Prado Munari
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| |
Collapse
|
11
|
Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW. A Meta-Assembly of Selection Signatures in Cattle. PLoS One 2016; 11:e0153013. [PMID: 27045296 PMCID: PMC4821596 DOI: 10.1371/journal.pone.0153013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Since domestication, significant genetic improvement has been achieved for many traits of commercial importance in cattle, including adaptation, appearance and production. In response to such intense selection pressures, the bovine genome has undergone changes at the underlying regions of functional genetic variants, which are termed “selection signatures”. This article reviews 64 recent (2009–2015) investigations testing genomic diversity for departure from neutrality in worldwide cattle populations. In particular, we constructed a meta-assembly of 16,158 selection signatures for individual breeds and their archetype groups (European, African, Zebu and composite) from 56 genome-wide scans representing 70,743 animals of 90 pure and crossbred cattle breeds. Meta-selection-scores (MSS) were computed by combining published results at every given locus, within a sliding window span. MSS were adjusted for common samples across studies and were weighted for significance thresholds across and within studies. Published selection signatures show extensive coverage across the bovine genome, however, the meta-assembly provides a consensus profile of 263 genomic regions of which 141 were unique (113 were breed-specific) and 122 were shared across cattle archetypes. The most prominent peaks of MSS represent regions under selection across multiple populations and harboured genes of known major effects (coat color, polledness and muscle hypertrophy) and genes known to influence polygenic traits (stature, adaptation, feed efficiency, immunity, behaviour, reproduction, beef and dairy production). As the first meta-assembly of selection signatures, it offers novel insights about the hotspots of selective sweeps in the bovine genome, and this method could equally be applied to other species.
Collapse
Affiliation(s)
- Imtiaz A. S. Randhawa
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
- * E-mail:
| | - Mehar S. Khatkar
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Peter C. Thomson
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Herman W. Raadsma
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| |
Collapse
|
12
|
Gurgul A, Szmatoła T, Ropka-Molik K, Jasielczuk I, Pawlina K, Semik E, Bugno-Poniewierska M. Identification of genome-wide selection signatures in the Limousin beef cattle breed. J Anim Breed Genet 2015; 133:264-76. [PMID: 26611546 DOI: 10.1111/jbg.12196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023]
Abstract
The study is aimed at identifying selection footprints within the genome of Limousin cattle. With the use of Extended Haplotype Homozygosity test, supplemented with correction for variation in recombination rates across the genome, we created map of selection footprints and detected 173 significant (p < 0.01) core haplotypes being potentially under positive selection. Within these regions, a number of candidate genes associated inter alia with skeletal muscle growth (GDF15, BMP7, BMP4 and TGFB3) or postmortem proteolysis and meat maturation (CAPN1 and CAPN5) were annotated. Noticeable clusters of selection footprints were detected on chromosomes 1, 4, 8 and 14, which are known to carry several quantitative trait loci for growth traits and meat quality. The study provides information about the genes and metabolic pathways potentially modified under the influence of directional selection, aimed at improving beef production characteristics in Limousin cattle.
Collapse
Affiliation(s)
- A Gurgul
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - T Szmatoła
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - K Ropka-Molik
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - I Jasielczuk
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - K Pawlina
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - E Semik
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - M Bugno-Poniewierska
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
13
|
Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet 2015; 6:167. [PMID: 26029239 PMCID: PMC4429627 DOI: 10.3389/fgene.2015.00167] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
This review compiles the results of 21 genomic studies of European Bos taurus breeds and thus provides a general picture of the selection signatures in taurine cattle identified by genome-wide selection-mapping scans. By performing a comprehensive summary of the results reported in the literature, we compiled a list of 1049 selection sweeps described across 37 cattle breeds (17 beef breeds, 14 dairy breeds, and 6 dual-purpose breeds), and four different beef-vs.-dairy comparisons, which we subsequently grouped into core selective sweep (CSS) regions, defined as consecutive signals within 1 Mb of each other. We defined a total of 409 CSSs across the 29 bovine autosomes, 232 (57%) of which were associated with a single-breed (Single-breed CSSs), 134 CSSs (33%) were associated with a limited number of breeds (Two-to-Four-breed CSSs) and 39 CSSs (9%) were associated with five or more breeds (Multi-breed CSSs). For each CSS, we performed a candidate gene survey that identified 291 genes within the CSS intervals (from the total list of 5183 BioMart-extracted genes) linked to dairy and meat production, stature, and coat color traits. A complementary functional enrichment analysis of the CSS positional candidates highlighted other genes related to pathways underlying behavior, immune response, and reproductive traits. The Single-breed CSSs revealed an over-representation of genes related to dairy and beef production, this was further supported by over-representation of production-related pathway terms in these regions based on a functional enrichment analysis. Overall, this review provides a comparative map of the selection sweeps reported in European cattle breeds and presents for the first time a characterization of the selection sweeps that are found in individual breeds. Based on their uniqueness, these breed-specific signals could be considered as “divergence signals,” which may be useful in characterizing and protecting livestock genetic diversity.
Collapse
Affiliation(s)
| | - Juan J Arranz
- Departamento de Producción Animal, Universidad de León León, Spain
| | - Pamela Wiener
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh Midlothian, UK
| |
Collapse
|
14
|
Biscarini F, Nicolazzi EL, Stella A, Boettcher PJ, Gandini G. Challenges and opportunities in genetic improvement of local livestock breeds. Front Genet 2015; 6:33. [PMID: 25763010 PMCID: PMC4340267 DOI: 10.3389/fgene.2015.00033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/25/2015] [Indexed: 11/29/2022] Open
Abstract
Sufficient genetic variation in livestock populations is necessary both for adaptation to future changes in climate and consumer demand, and for continual genetic improvement of economically important traits. Unfortunately, the current trend is for reduced genetic variation, both within and across breeds. The latter occurs primarily through the loss of small, local breeds. Inferior production is a key driver for loss of small breeds, as they are replaced by high-output international transboundary breeds. Selection to improve productivity of small local breeds is therefore critical for their long term survival. The objective of this paper is to review the technology options available for the genetic improvement of small local breeds and discuss their feasibility. Most technologies have been developed for the high-input breeds and consequently are more favorably applied in that context. Nevertheless, their application in local breeds is not precluded and can yield significant benefits, especially when multiple technologies are applied in close collaboration with farmers and breeders. Breeding strategies that require cooperation and centralized decision-making, such as optimal contribution selection, may in fact be more easily implemented in small breeds.
Collapse
Affiliation(s)
| | | | - Alessandra Stella
- Parco Tecnologico Padano , Lodi, Italy ; Institute of Agricultural Biology and Biotechnology, National Research Council , Milan, Italy
| | - Paul J Boettcher
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations , Rome, Italy
| | - Gustavo Gandini
- Department of Veterinary Sciences and Public Health, University of Milan , Milan, Italy
| |
Collapse
|