1
|
Ncube KT, Nephawe KA, Mpofu TJ, Monareng NJ, Mofokeng MM, Mtileni B. Genomic Advancements in Assessing Growth Performance, Meat Quality, and Carcass Characteristics of Goats in Sub-Saharan Africa: A Systematic Review. Int J Mol Sci 2025; 26:2323. [PMID: 40076942 PMCID: PMC11900380 DOI: 10.3390/ijms26052323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Goats play a vital role in global livestock systems, particularly in developing regions, where they contribute significantly to meat production and smallholder livelihoods. Indigenous goats in sub-Saharan Africa are essential to low-input farming systems, valued for their adaptability to harsh environments and their provision of meat, milk, and income. However, genomic research on these goats remains limited despite their importance. Recent advancements in genomic technologies, such as next-generation sequencing (NGS), genome-wide association (GWAS) studies, and single nucleotide polymorphism (SNP) mapping, have identified key genes like MSTN, IGF1, and CAST. These genes influence muscle growth, fat deposition, and meat tenderness, which are critical for improving growth performance, carcass characteristics, and meat quality. Genomic selection offers a promising avenue for enhancing economically valuable traits, such as faster growth rates and adaptability to challenging climates. This review highlights the potential of integrating genomic tools with traditional breeding practices to optimise goat production systems, enhance meat quality, and improve economic outcomes for farmers. It also underscores the need for further research to fully characterise the genetic diversity of indigenous goat breeds in sub-Saharan Africa. Addressing these knowledge gaps could significantly contribute to the region's food security and sustainable farming practices.
Collapse
Affiliation(s)
- Keabetswe T. Ncube
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0002, South Africa (N.J.M.); (M.M.M.)
| | | | | | | | | | | |
Collapse
|
2
|
Ncube KT, Modiba MC, Mpofu TJ, Nephawe KA, Mtileni B. Genomic Tools for Medicinal Properties of Goat Milk for Cosmetic and Health Benefits: A Narrative Review. Int J Mol Sci 2025; 26:893. [PMID: 39940662 PMCID: PMC11817167 DOI: 10.3390/ijms26030893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Goat milk has gained recognition for its medicinal, cosmetic, and health benefits, particularly its potential to improve human skin conditions. Its therapeutic properties are attributed to bioactive compounds influenced by genes such as lactoferrin (LTF), lysozyme (LYZ), and β-casein (CSN2), known for their antimicrobial, immunomodulatory, and anti-inflammatory effects. Genetic factors are hypothesized to shape goat milk's composition and its effectiveness in managing dermatological conditions like eczema and psoriasis. Understanding these genetic determinants is critical to optimizing the use of goat milk in skin health applications. This review aims to explore the application of genomic tools to elucidate the medicinal properties of goat milk and its implications for skin care. By identifying the specific genes and molecular mechanisms underpinning its therapeutic effects, genomic studies have provided insights into the bioactive constituents of goat milk, such as peptides, proteins, and lipids, which contribute to its dermatological efficacy. Candidate genes, including growth hormone receptor (GHR), butyrophilin (BTN1A1), and lactoglobulin (LGB), have been identified as critical for enhancing milk quality and functionality. Future research should integrate genomic data with functional studies to further investigate goat milk's immunomodulatory, antimicrobial, and antioxidant activities. Such insights could advance targeted breeding strategies and innovative formulations for managing inflammatory skin conditions and promoting skin health.
Collapse
Affiliation(s)
- Keabetswe T. Ncube
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0002, South Africa (B.M.)
| | | | | | | | | |
Collapse
|
3
|
Cai K, Wang W, Wang X, Pang Z, Zhou Z, Cheng L, Qiao L, Liu Q, Pan Y, Yang K, Liu W, Liu J. Genetic Diversity and Selection Signatures of Lvliang Black Goat Using Genome-Wide SNP Data. Animals (Basel) 2024; 14:3154. [PMID: 39518877 PMCID: PMC11544794 DOI: 10.3390/ani14213154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Lvliang black goat (LBG) is an excellent local breed resource in China that is known for its black fur, excellent meat quality, and strong adaptability. Studying the genetic mechanism and germplasm characteristics of LBG can provide theoretical and practical basis for the protection of the genetic resources of this breed and help implement conservation and breeding. In this study, the genetic diversity of the LBG population was evaluated using whole-genome SNP data. It was found that the LBG population had a high genetic diversity and a low degree of inbreeding. According to the clustering results of male goats and the relationship between individuals, the LBG population was divided into 13 families. Then, through population structure analysis, it was found that LBG had a close genetic relationship with the Nanjiang goat and Qinggoda goat populations, and they may have the same ancestors. The LBG population has retained some ancient genetic characteristics and is a special population that integrates local genetic characteristics and foreign gene flow. Through four selection signal analyses, we detected multiple candidate genes related to economic traits (CFL2, SCD, NLRP14, etc.) and adaptability (C4BPA, FUT8, PRNP, etc.) in the LBG population. In addition, in a comparative analysis with three commercial breeds (Saanen goat, Boer goat and Angora goat) we also found multiple genes related to physical characteristics (ERG, NRG3, EDN3, etc.). Finally, we performed functional enrichment analysis on these genes and explored their genetic mechanisms. This study provides important data support for the protection and breeding of LBG and provides a new perspective for enriching the genetic diversity of goat populations.
Collapse
Affiliation(s)
- Ke Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Xu Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhixu Pang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhenqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Lifen Cheng
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (Q.L.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Qiaoxia Liu
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (Q.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Precision Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
4
|
Belay S, Belay G, Nigussie H, Ahbara AM, Tijjani A, Dessie T, Tarekegn GM, Jian-Lin H, Mor S, Woldekiros HS, Dobney K, Lebrasseur O, Hanotte O, Mwacharo JM. Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats. Sci Rep 2024; 14:14908. [PMID: 38942813 PMCID: PMC11213886 DOI: 10.1038/s41598-024-65303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.
Collapse
Affiliation(s)
- Shumuye Belay
- Tigray Agricultural Research Institute, Mekelle, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Helen Nigussie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abulgasim M Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Department of Zoology, Misurata University, Misurata, Libya
| | - Abdulfatai Tijjani
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Getinet M Tarekegn
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Institute of Biotechnology (IoB), Addis Ababa University, Addis Ababa, Ethiopia
| | - Han Jian-Lin
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siobhan Mor
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helina S Woldekiros
- Department of Anthropology, Washington University in St. Louis, St. Louis, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- University of Sydney, Sydney, Australia
| | - Ophelie Lebrasseur
- Palaeogenomics and Bioarchaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK.
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.
| |
Collapse
|
5
|
Vostry L, Vostra-Vydrova H, Moravcikova N, Kasarda R, Margetin M, Rychtarova J, Drzaic I, Shihabi M, Cubric-Curik V, Sölkner J, Curik I. Genomic analysis of conservation status, population structure and admixture in local Czech and Slovak dairy goat breeds. J Dairy Sci 2024:S0022-0302(24)00937-8. [PMID: 38908686 DOI: 10.3168/jds.2023-24607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
While dairy goat production, characterized by traditional production on small farms, is an important source of income in the Czech Republic and Slovakia, locally adapted breeds have not been fully consolidated over the last 100 years due to large fluctuations in population size and inconsistent breeding programs that allowed for different crossbreeding strategies. Our main objective in this study was therefore to assess the conservation status of 4 Czech (Alpine Goat, White Shorthair, Brown Shorthair and Czech Landrace) and one Slovak (Slovak White Shorthair) local goat breeds, to analyze their population structure and admixture, and to estimate their relatedness to several neighboring breeds. Our analyses included 142 goats belonging to 5 local breeds genotyped with the Illumina 50K BeadChip and 618 previously genotyped animals representing 15 goat breeds from Austria and Switzerland (all analyses based on 46,862 autosomal SNPs and 760 animals). In general, the conservation status of the Czech and Slovak local goat breeds was satisfactory, with the exception of the Brown Shorthair goat, as the analyzed parameters (heterozygosity, haplotype richness, ROH-based inbreeding and effective population size) were mostly above the median of 20 breeds. However, for all 5 Czech and Slovakian breeds, an examination of historical effective population size indicated a substantial decline about 8 to 22 generations ago. In addition, our study revealed that the Czech and Slovakian breeds are not fully consolidated; for instance, White Shorthair and Brown Shorthair were not clearly distinguishable. Considerable admixture, especially in Czech Landrace (effective number of parental clusters equal to 4.2), and low but numerous migration rates from other Austrian and Swiss breeds were found. These results provide valuable insights for future breeding programs and genetic diversity management of local Czech and Slovak goat breeds.
Collapse
Affiliation(s)
- Lubos Vostry
- Czech University of Life Science Prague, Kamycka 129, 16500 Prague, Czech Republic.
| | - Hana Vostra-Vydrova
- Czech University of Life Science Prague, Kamycka 129, 16500 Prague, Czech Republic
| | - Nina Moravcikova
- Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Radovan Kasarda
- Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Milan Margetin
- Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Jana Rychtarova
- Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic
| | - Ivana Drzaic
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Mario Shihabi
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Vlatka Cubric-Curik
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Johan Sölkner
- University of Natural Resources & Life Sciences Vienna, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
| | - Ino Curik
- University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia; Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary.
| |
Collapse
|
6
|
Belay S, Belay G, Nigussie H, Jian-Lin H, Tijjani A, Ahbara AM, Tarekegn GM, Woldekiros HS, Mor S, Dobney K, Lebrasseur O, Hanotte O, Mwacharo JM. Whole-genome resource sequences of 57 indigenous Ethiopian goats. Sci Data 2024; 11:139. [PMID: 38287052 PMCID: PMC10825132 DOI: 10.1038/s41597-024-02973-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Domestic goats are distributed worldwide, with approximately 35% of the one billion world goat population occurring in Africa. Ethiopia has 52.5 million goats, ~99.9% of which are considered indigenous landraces deriving from animals introduced to the Horn of Africa in the distant past by nomadic herders. They have continued to be managed by smallholder farmers and semi-mobile pastoralists throughout the region. We report here 57 goat genomes from 12 Ethiopian goat populations sampled from different agro-climates. The data were generated through sequencing DNA samples on the Illumina NovaSeq 6000 platform at a mean depth of 9.71x and 150 bp pair-end reads. In total, ~2 terabytes of raw data were generated, and 99.8% of the clean reads mapped successfully against the goat reference genome assembly at a coverage of 99.6%. About 24.76 million SNPs were generated. These SNPs can be used to study the population structure and genome dynamics of goats at the country, regional, and global levels to shed light on the species' evolutionary trajectory.
Collapse
Affiliation(s)
- Shumuye Belay
- Tigray Agricultural Research Institute, Mekelle, Tigray, Ethiopia.
- Addis Ababa University, Department of Microbial, Cellular and Molecular Biology, Addis Ababa, Ethiopia.
- LiveGene Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
| | - Gurja Belay
- Addis Ababa University, Department of Microbial, Cellular and Molecular Biology, Addis Ababa, Ethiopia.
| | - Helen Nigussie
- Addis Ababa University, Department of Microbial, Cellular and Molecular Biology, Addis Ababa, Ethiopia
| | - Han Jian-Lin
- ILRI-CAAS Joint Laboratory on Livestock and Forage Genetic Resources, Beijing, China
| | - Abdulfatai Tijjani
- LiveGene Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Abulgasim M Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Department of Zoology, Misurata University, Misurata, Libya
| | - Getinet M Tarekegn
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Helina S Woldekiros
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Siobhan Mor
- LiveGene Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- School of Philosophical and Historical Inquiry, University of Sydney, Sydney, Australia
| | - Ophelie Lebrasseur
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Olivier Hanotte
- LiveGene Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK.
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Gebreselase HB, Nigussie H, Wang C, Luo C. Genetic Diversity, Population Structure and Selection Signature in Begait Goats Revealed by Whole-Genome Sequencing. Animals (Basel) 2024; 14:307. [PMID: 38254476 PMCID: PMC10812714 DOI: 10.3390/ani14020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Goats belong to a group of animals called small ruminants and are critical sources of livelihood for rural people. Genomic sequencing can provide information ranging from basic knowledge about goat diversity and evolutionary processes that shape genomes to functional information about genes/genomic regions. In this study, we exploited a whole-genome sequencing data set to analyze the genetic diversity, population structure and selection signatures of 44 individuals belonging to 5 Ethiopian goat populations: 12 Aberegalle (AB), 5 Afar (AF), 11 Begait (BG), 12 Central highlands (CH) and 5 Meafure (MR) goats. Our results revealed the highest genetic diversity in the BG goat population compared to the other goat populations. The pairwise genetic differentiation (FST) among the populations varied and ranged from 0.011 to 0.182, with the closest pairwise value (0.003) observed between the AB and CH goats and a distant correlation (FST = 0.182) between the BG and AB goats, indicating low to moderate genetic differentiation. Phylogenetic tree, ADMIXTURE and principal component analyses revealed a classification of the five Ethiopian goat breeds in accordance with their geographic distribution. We also found three top genomic regions that were detected under selection on chromosomes 2, 5 and 13. Moreover, this study identified different candidate genes related to milk characteristics (GLYCAM1 and SRC), carcass (ZNF385B, BMP-7, PDE1B, PPP1R1A, FTO and MYOT) and adaptive and immune response genes (MAPK13, MAPK14, SCN7A, IL12A, EST1 DEFB116 and DEFB119). In conclusion, this information could be helpful for understanding the genetic diversity and population structure and selection scanning of these important indigenous goats for future genetic improvement and/or as an intervention mechanism.
Collapse
Affiliation(s)
- Haile Berihulay Gebreselase
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Department of Biotechnology, College of Natural and Computational Science, Aksum University, Aksum 1010, Tigray, Ethiopia
| | | | - Changfa Wang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China;
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Zhong T, Wang X, Huang C, Yang L, Zhao Q, Chen X, Freitas-de-Melo A, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Niu L. A genome-wide perspective on the diversity and selection signatures in indigenous goats using 53 K single nucleotide polymorphism array. Animal 2023; 17:100706. [PMID: 36758301 DOI: 10.1016/j.animal.2023.100706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Tibetan goats, Taihang goats, Jining grey goats, and Meigu goats are the representative indigenous goats in China, found in Qinghai-Tibet Plateau, Western pastoral area, Northern and Southern agricultural regions. Very few studies have conducted a comprehensive analysis of the genomic diversity and selection of these breeds. We genotyped 96 unrelated individuals, using goat 53 K Illumina BeadChip array, of the following goat breeds: Tibetan (TG), Taihang (THG), Jining grey (JGG), and Meigu (MGG). A total of 45 951 single nucleotide polymorphisms were filtered to estimate the genetic diversity and selection signatures. All breeds had a high proportion (over 95%) of polymorphic loci. The observed and excepted heterozygosity ranged from 0.338 (MGG) to 0.402 (JGG) and 0.339 (MGG) to 0.395 (JGG), respectively. Clustering analysis displayed a genetically distinct lineage for each breed, and their Fst were greater than 0.25, indicating that they had a higher genetic differentiation between groups. Furthermore, effective population size reduced in all four populations, indicating a loss of genetic diversity. In addition, runs of homozygosity were mainly distributed in 5-10 Mb. Lastly, we identified signature genes, which were closely related to high-altitude adaptation (ADIRF) and prolificity (CNTROB, SMC3, and PTEN). This study provides a valuable resource for future studies on genome-wide perspectives on the diversity and selection signatures of Chinese indigenous goats.
Collapse
Affiliation(s)
- Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlu Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Magoro AM, Mtileni B, Hadebe K, Zwane A. Assessment of Genetic Diversity and Conservation in South African Indigenous Goat Ecotypes: A Review. Animals (Basel) 2022; 12:ani12233353. [PMID: 36496874 PMCID: PMC9735466 DOI: 10.3390/ani12233353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Goats were amongst the first livestock to be domesticated more than 10,000 years ago for their meat, milk, skin, and fiber. They were introduced to Southern Africa by migrating nations from Central Africa to the south. Due to local adaptation to the different agro-ecological zones and selection, indigenous goats are identified as ecotypes within the indigenous veld goat breed. Their ability to thrive in a resource-limited production system and in challenging environmental conditions makes them valuable animal resources for small-scale and emerging farmers. They play important roles in household agriculture and cultural activities as well as in poverty alleviation. Studies have described the phenotypic and genetic variations in indigenous goats, targeting the major goat-producing regions and the breeds of South Africa. In turn, information is restricted to certain breeds and regions, and the experimental design is often not adequate to inform the conservation status and priorities in changing environments. Advances in genomics technologies have availed more opportunities for the assessment of the biodiversity, demographic histories, and detection regions associated with local adaptation. These technologies are essential for breeding and conservation strategies for sustainable production for food security. This review focuses on the status of indigenous goats in South Africa and the application of genomics technologies for characterization, with emphasis on prioritization for conservation and sustainable utilization.
Collapse
Affiliation(s)
- Aletta Matshidiso Magoro
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
- Agricultural Research Council, Animal Production, Irene 0062, South Africa
- Correspondence:
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Avhashoni Zwane
- Agricultural Research Council, Animal Production, Irene 0062, South Africa
| |
Collapse
|
10
|
Ncube KT, Dzomba EF, Rosen BD, Schroeder SG, Van Tassell CP, Muchadeyi FC. Differential gene expression and identification of growth-related genes in the pituitary gland of South African goats. Front Genet 2022; 13:811193. [PMID: 36072660 PMCID: PMC9442344 DOI: 10.3389/fgene.2022.811193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Growth and carcass quality are economically important traits in goat production. This study investigated differentially expressed genes from the caprine pituitary gland transcriptome of South African indigenous goat breeds of varying growth performances and carcass quality parameters. Tissues were harvested from the pituitary gland of three South African Boer goats and three village ecotype goats all raised under similar conditions simulating intensive commercial production systems. Three additional tissues were harvested from village ecotype goats that were raised extensively on village farms. Between breed differences were investigated by comparing differential gene expression among three South African Boer and three village goats that were both raised under intensive commercial production system at a research farm. Within-breed differences were investigated by comparing differential gene expression among three village goats raised under extensive conditions (on-farm in Pella, S.A. village farming community) and three village goats raised under intensive commercial production system (at ARC research farm in Pretoria, South Africa. Total RNA was isolated from the pituitary gland of 36-week-old animals (n = 9) and sequenced individually in triplicates. An average of 28,298,512 trimmed, and quality-controlled reads/animal were mapped to the goat genome (Capra_hircus.ARS1.94) using HiSat2 software. Transcript assembly and quantification yielded 104 differentially expressed genes for village goats raised under extensive system and 62 for village goats raised under the intensive production system at the false discovery rate (FRD) of ≤0.05 and a fold change of ≥2. Growth-related genes such as POU3F4 and TSHZ1 were highly expressed within breeds raised under both production systems. Conversely, growth-related genes such as FGFR2 and SMPX genes were highly expressed between breeds raised under similar production systems. Ballgown analysis revealed a high expression of GH1 and IGF1 in the intensively raised compared to extensively raised goats. Both genes were also highly expressed in the village goats when compared to the Boer. The differential gene expression data provided insights into genes and molecular mechanisms associated with growth and growth development in goats.
Collapse
Affiliation(s)
- Keabetswe T. Ncube
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa
| | - Ben D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Stephen G. Schroeder
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Curt P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Farai. C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
- *Correspondence: Farai. C. Muchadeyi,
| |
Collapse
|
11
|
Chokoe TC, Hadebe K, Muchadeyi FC, Nephawe KA, Dzomba EF, Mphahlele TD, Matelele TC, Mtileni BJ. Conservation status and historical relatedness of South African communal indigenous goat populations using a genome-wide single-nucleotide polymorphism marker. Front Genet 2022; 13:909472. [PMID: 36017496 PMCID: PMC9395594 DOI: 10.3389/fgene.2022.909472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Indigenous goats form the majority of populations in smallholder, low input, low output production systems and are considered an important genetic resource due to their adaptability to different production environments and support of communal farming. Effective population size (Ne), inbreeding levels, and the runs of homozygosity (ROHs) are effective tools for exploring the genetic diversity and understanding the demographic history in efforts to support breeding strategies to use and conserve genetic resources. Across populations, the current Ne of Gauteng was the lowest at 371 animals, while the historical Ne across populations suggests that the ancestor Ne has decreased by 53.86%, 44.58%, 42.16%, and 41.16% in Free State (FS), North West (NW), Limpopo (LP), and Gauteng (GP), respectively, over the last 971 generations. Genomic inbreeding levels related to ancient kinship (FROH > 5 Mb) were highest in FS (0.08 ± 0.09) and lowest in the Eastern Cape (EC) (0.02 ± 0.02). A total of 871 ROH island regions which include important environmental adaptation and hermo-tolerance genes such as IL10RB, IL23A, FGF9, IGF1, EGR1, MTOR, and MAPK3 were identified (occurring in over 20% of the samples) in FS (n = 37), GP (n = 42), and NW (n = 2) populations only. The mean length of ROH across populations was 7.76 Mb and ranged from 1.61 Mb in KwaZulu-Natal (KZN) to 98.05 Mb (GP and NW). The distribution of ROH according to their size showed that the majority (n = 1949) of the detected ROH were > 5 Mb in length compared to the other categories. Assuming two hypothetical ancestral populations, the populations from KZN and LP are revealed, supporting PC 1. The genomes of KZN and LP share a common origin but have substantial admixture from the EC and NW populations. The findings revealed that the occurrence of high Ne and autozygosity varied largely across breeds in communal indigenous goat populations at recent and ancient events when a genome-wide single-nucleotide polymorphism (SNP) marker was used. The use of Illumina goat SNP50K BeadChip shows that there was a migration route of communal indigenous goat populations from the northern part (LP) of South Africa to the eastern areas of the KZN that confirmed their historical relatedness and coincides with the migration periods of the Bantu nation.
Collapse
Affiliation(s)
- T. C. Chokoe
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
- School of Agriculture & Environmental Sciences, University of Limpopo, Polokwane, South Africa
- *Correspondence: T. C. Chokoe,
| | - K. Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - K. A. Nephawe
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - E. F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of Kwazulu-Natal, Scottsville, South African
| | - T. D. Mphahlele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - T. C. Matelele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - B. J. Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
12
|
Teissier M, Brito LF, Schenkel FS, Bruni G, Fresi P, Bapst B, Robert-Granie C, Larroque H. Genetic Characterization and Population Connectedness of North American and European Dairy Goats. Front Genet 2022; 13:862838. [PMID: 35783257 PMCID: PMC9247305 DOI: 10.3389/fgene.2022.862838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Genomic prediction of breeding values is routinely performed in several livestock breeding programs around the world, but the size of the training populations and the genetic structure of populations evaluated have, in many instances, limited the increase in the accuracy of genomic estimated breeding values. Combining phenotypic, pedigree, and genomic data from genetically related populations can be a feasible strategy to overcome this limitation. However, the success of across-population genetic evaluations depends on the pedigree connectedness and genetic relationship among individuals from different populations. In this context, this study aimed to evaluate the genetic connectedness and population structure of Alpine and Saanen dairy goats from four countries involved in the European project SMARTER (SMAll RuminanTs Breeding for Efficiency and Resilience), including Canada, France, Italy, and Switzerland. These analyses are paramount for assessing the potential feasibility of an across-country genomic evaluation in dairy goats. Approximately, 9,855 genotyped individuals (with 51% French genotyped animals) and 6,435,189 animals included in the pedigree files were available across all four populations. The pedigree analyses indicated that the exchange of breeding animals was mainly unilateral with flows from France to the other three countries. Italy has also imported breeding animals from Switzerland. Principal component analyses (PCAs), genetic admixture analysis, and consistency of the gametic phase revealed that French and Italian populations are more genetically related than the other dairy goat population pairs. Canadian dairy goats showed the largest within-breed heterogeneity and genetic differences with the European populations. The genetic diversity and population connectedness between the studied populations indicated that an international genomic evaluation may be more feasible, especially for French and Italian goats. Further studies will investigate the accuracy of genomic breeding values when combining the datasets from these four populations.
Collapse
Affiliation(s)
- Marc Teissier
- GenPhySE, Université de Toulouse, Toulouse, France
- *Correspondence: Marc Teissier,
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Flavio S. Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals (Basel) 2022; 12:ani12111356. [PMID: 35681821 PMCID: PMC9204547 DOI: 10.3390/ani12111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.
Collapse
|
14
|
Ncube KT, Dzomba EF, Hadebe K, Soma P, Frylinck L, Muchadeyi FC. Carcass Quality Profiles and Associated Genomic Regions of South African Goat Populations Investigated Using Goat SNP50K Genotypes. Animals (Basel) 2022; 12:ani12030364. [PMID: 35158687 PMCID: PMC8833661 DOI: 10.3390/ani12030364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary South Africa is one of the major goat producing countries on the African continent. However, despite a large number of goats being produced, there is still a growing demand for chevon, which leads to producers being unable to reach demand, resulting in an absence of chevon in retail markets. Carcass quality is an important economic trait that plays a major role in influencing consumer preferences and high nutrient provision. Even though chevon is an easily accessible meat for smallholder farmers and has health benefits, it is still less preferred due to perceptions of low meat quality attributes such as toughness, off-odours and flavour, and unappealing colour. The majority of goat populations are village ecotypes whose genetic potential for meat and carcass quality is unknown. Abstract Carcass quality includes a battery of essential economic meat traits that play a significant role in influencing farmer breed preferences. A preliminary study was undertaken to investigate the carcass quality and the associated genomic regions in a small nucleus of animals that are representative of South African goat genetic resources. Samples of the South African Boer (n = 14), Northern Cape Speckled (n = 14), Eastern Cape Xhosa Lob ear (n = 12), Nguni/Mbuzi (n = 13), and Village (n = 20) were genotyped using the Illumina goat SNP50K and were phenotyped for carcass quality traits. SA Boer goats had heavier warm and cold carcass weights (17.2 ± 2.3 kg and 16.3 ± 2.3 kg). Pella village goats raised under an intensive system had significantly (p < 0.05) heavier warm and cold carcass weights (9.9 ± 1.1 kg and 9.2 ± 1.2 kg) compared to the village goats that are raised extensively (9.1 ± 2.0 kg and 8.4 ± 1.9). A total of 40 SNPs located on chromosomes 6, 10, 12, 13, 19, and 21 were significantly associated with carcass traits at (−log10 [p < 0.05]). Candidate genes that were associated with carcass characteristics (GADD45G, IGF2R, GAS1, VAV3, CAPN8, CAPN7, CAPN2, GHSR, COLQ, MRAS, and POU1F1) were also observed. Results from this study will inform larger future studies that will ultimately find use in breed improvement programs.
Collapse
Affiliation(s)
- Keabetswe Tebogo Ncube
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa; (K.T.N.); (K.H.)
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa;
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa;
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa; (K.T.N.); (K.H.)
| | - Pranisha Soma
- Agricultural Research Council, Animal Production, Private Bag X2, Irene 0062, South Africa; (P.S.); (L.F.)
| | - Lorinda Frylinck
- Agricultural Research Council, Animal Production, Private Bag X2, Irene 0062, South Africa; (P.S.); (L.F.)
| | - Farai Catherine Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa; (K.T.N.); (K.H.)
- Correspondence:
| |
Collapse
|
15
|
McManus C, Hermuche PM, Paiva SR, Guimarães RF, Carvalho Junior OA, Blackburn HD. Gene bank collection strategies based upon geographic and environmental indicators for beef breeds in the United States of America. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
|
17
|
An Overview of the Use of Genotyping Techniques for Assessing Genetic Diversity in Local Farm Animal Breeds. Animals (Basel) 2021; 11:ani11072016. [PMID: 34359144 PMCID: PMC8300386 DOI: 10.3390/ani11072016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The number of local farm animal breeds is declining worldwide. However, these breeds have different degrees of genetic diversity. Measuring genetic diversity is important for the development of conservation strategies and, therefore, various genomic analysis techniques are available. The aim of the present work was to shed light on the use of these techniques in diversity studies of local breeds. In summary, a total of 133 worldwide studies that examined genetic diversity in local cattle, sheep, goat, chicken and pig breeds were reviewed. The results show that over time, almost all available genomic techniques were used and various diversity parameters were calculated. Therefore, the present results provide a comprehensive overview of the application of these techniques in the field of local breeds. This can provide helpful insights into the advancement of the conservation of breeds with high genetic diversity. Abstract Globally, many local farm animal breeds are threatened with extinction. However, these breeds contribute to the high amount of genetic diversity required to combat unforeseen future challenges of livestock production systems. To assess genetic diversity, various genotyping techniques have been developed. Based on the respective genomic information, different parameters, e.g., heterozygosity, allele frequencies and inbreeding coefficient, can be measured in order to reveal genetic diversity between and within breeds. The aim of the present work was to shed light on the use of genotyping techniques in the field of local farm animal breeds. Therefore, a total of 133 studies across the world that examined genetic diversity in local cattle, sheep, goat, chicken and pig breeds were reviewed. The results show that diversity of cattle was most often investigated with microsatellite use as the main technique. Furthermore, a large variety of diversity parameters that were calculated with different programs were identified. For 15% of the included studies, the used genotypes are publicly available, and, in 6%, phenotypes were recorded. In conclusion, the present results provide a comprehensive overview of the application of genotyping techniques in the field of local breeds. This can provide helpful insights to advance the conservation of breeds.
Collapse
|
18
|
Tarekegn GM, Khayatzadeh N, Liu B, Osama S, Haile A, Rischkowsky B, Zhang W, Tesfaye K, Dessie T, Mwai OA, Djikeng A, Mwacharo JM. Ethiopian indigenous goats offer insights into past and recent demographic dynamics and local adaptation in sub-Saharan African goats. Evol Appl 2021; 14:1716-1731. [PMID: 34295359 PMCID: PMC8287980 DOI: 10.1111/eva.13118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge on how adaptive evolution and human socio-cultural and economic interests shaped livestock genomes particularly in sub-Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio-climatic conditions. Using 52K genome-wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome-wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi-Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub-Saharan Africa indigenous goats.
Collapse
Affiliation(s)
- Getinet M. Tarekegn
- Department of Animal Production and TechnologySchool of Animal Sciences and Veterinary MedicineBahir Dar UniversityBahir DarEthiopia
- Department of Animal Breeding and GeneticsSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural SystemsDivision of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bin Liu
- Inner Mongolia Agricultural UniversityHohhotChina
| | - Sarah Osama
- The University of QueenslandSaint LuciaQLDAustralia
| | - Aynalem Haile
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | - Barbara Rischkowsky
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | | | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular BiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI)Addis AbabaEthiopia
| | - Okeyo A. Mwai
- International Livestock Research Institute (ILRI)NairobiKenya
| | - Appolinaire Djikeng
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| | - Joram M. Mwacharo
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| |
Collapse
|
19
|
Exploring genetic diversity and population structure of Punjab goat breeds using Illumina 50 K SNP bead chip. Trop Anim Health Prod 2021; 53:368. [PMID: 34169364 DOI: 10.1007/s11250-021-02825-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Pakistan has 35 goat breeds. Moreover, the province of Punjab has highest goat population constituting 37% of country's total population with seven goat breeds including Beetal, Daira Deen Panah, Nachi, Barbari, Teddi, Pahari, and Pothwari. The diversity study of breeds warrants the documentation of breeds particularly using genome wide panel of markers, i.e., SNP chip. The objective of the current study was to fill this gap of information. Therefore, in current study we collected total of 879 unrelated goat blood samples along with data on body weight measurements; genomic DNA was extracted, and genotyping was carried out using 50 K SNP bead chip. Quality control measures were performed in Plink 1.07. Genetic diversity was observed among studied populations using heterozygosity and pairwise FST estimates, principal component analysis, admixture analysis in Plink software with visualization in Clumpak, and constructing phylogenetic tree in Mega 7 software. Moderate to high level of heterozygosity was observed among the studied populations. Coefficient of inbreeding varied from 0.0186 ± 0.0327 in Pahari to 0.183 ± 0.0715 in Barbari. Barbari and Daira Deen Panah had quite higher level of inbreeding coefficient as compared to all other breeds with value of 0.183 ± 0.0715 and 0.1378 ± 0.0741, respectively. PCA identified three steps of subdividing the seven goat breeds at various levels of K. All the seven breeds made independent clusters at various levels of PCA. Admixture analysis revealed the distinctness of Teddi and Barbari breeds. Genetic sub-structuring was observed in the admixture patterns of Beetal breed. Moreover, high level of genetic admixture was observed in Nachi, Pahari, Pothwari, and Daira Deen Panah breeds. Admixture results were further interpreted by calculating pairwise FST values. Our results provided first insights about genetic diversity of Pakistani goat breeds based on genomic data. To conclude, the enriched goat breed diversity in Pakistan could provide valuable genetic reservoir for national breeding schemes.
Collapse
|
20
|
Strillacci MG, Vevey M, Blanchet V, Mantovani R, Sartori C, Bagnato A. The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System. Animals (Basel) 2020; 10:ani10122385. [PMID: 33322839 PMCID: PMC7764440 DOI: 10.3390/ani10122385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
The Aosta Red Pied (Valdostana Pezzata Rossa (VRP)), the Aosta Black Pied (Valdostana Pezzata Nera (VBP)) and the Aosta Chestnut (Valdostana Castana (CAS)) are dual-purpose cattle breeds (meat and milk), very well adapted to the harsh environmental conditions of alpine territories: their farming is in fact characterized by summer pasture at very high altitude. A total of 728 individuals were genotyped with the GeenSeek Genomic Profiler® (GGP) Bovine 150K Illumina SNP chip as a part of the DUALBREEDING-PSRN Italian-funded research project. The genetic diversity among populations showed that the three breeds are distinct populations based on the FST values, ADMIXTURE and Principal Component Analysis (PCA) results. Runs of Homozygosity (ROH) were obtained for the three populations to disclose recent autozygosity. The genomic inbreeding based on the ROH was calculated and coupled with information derived from the F (inbreeding coefficient) and FST parameters. The mean FROH values were low: CAS = 0.06, VBP = 0.05 and VRP = 0.07, while the average F values were -0.003, -0.01 and -0.003, respectively. The annotation and enrichment analysis, performed in the identified most frequent ROH (TOP_ROH), showed genes that can be linked to the resilience capacity of these populations to harsh environmental farming conditions, and to the peculiar characteristics searched for by farmers in each breed.
Collapse
Affiliation(s)
- Maria Giuseppina Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 20133 Milano, Italy;
| | - Mario Vevey
- Associazione Nazionale Bovini di Razza Valdostana, Fraz. Favret, 5, 11020 Gressan, Italy; (M.V.); (V.B.)
| | - Veruska Blanchet
- Associazione Nazionale Bovini di Razza Valdostana, Fraz. Favret, 5, 11020 Gressan, Italy; (M.V.); (V.B.)
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (R.M.); (C.S.)
| | - Cristina Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (R.M.); (C.S.)
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5033-4583
| |
Collapse
|
21
|
Conservation Assessment of the State Goat Farms by Using SNP Genotyping Data. Genes (Basel) 2020; 11:genes11060652. [PMID: 32545749 PMCID: PMC7349881 DOI: 10.3390/genes11060652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023] Open
Abstract
Conservation of genetic resources is of great concern globally to maintain genetic diversity for sustainable food security. Comprehensive identification of the breed composition, estimation of inbreeding and effective population size are essential for the effective management of farm animal genetic resources and to prevent the animals from genetic erosion. The Zhongwei male (ZWM), Arbas Cashmere male (ACM) and Jining Grey male (JGM) goats are conserved in three different state goat farms in China but their family information, level of inbreeding and effective population size are unknown. We investigated the genomic relationship, inbreeding coefficient and effective population size in these three breeds from three state goat farms using the Illumina goat SNP50 BeadChip. Genomic relationships and phylogenetic analysis revealed that the breeds are clearly separated and formed separate clusters based on their genetic relationship. We obtained a high proportion of informative SNPs, ranging from 91.8% in the Arbas Cashmere male to 96.2% in the Jining Grey male goat breeds with an average mean of 96.8%. Inbreeding, as measured by FROH, ranged from 1.79% in ZWM to 8.62% in ACM goat populations. High FROH values, elevated genomic coverage of very long ROH (>30 Mb) and severe decline in effective population size were recorded in ACM goat farm. The existence of a high correlation between FHOM and FROH indicates that FROH can be used as an alternative to inbreeding estimates in the absence of pedigree records. The Ne estimates 13 generations ago were 166, 69 and 79 for ZWM, ACM and JGM goat farm, respectively indicating that these goat breeds were strongly affected by selection pressure or genetic drift. This study provides insight into the genomic relationship, levels of inbreeding and effective population size in the studied goat populations conserved in the state goat farms which will be valuable in prioritizing populations for conservation and for developing suitable management practices for further genetic improvement of these Chinese male goats.
Collapse
|
22
|
Hlongwane NL, Hadebe K, Soma P, Dzomba EF, Muchadeyi FC. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front Genet 2020; 11:344. [PMID: 32457791 PMCID: PMC7221027 DOI: 10.3389/fgene.2020.00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic diversity is of great importance and a prerequisite for genetic improvement and conservation programs in pigs and other livestock populations. The present study provides a genome wide analysis of the genetic variability and population structure of pig populations from different production systems in South Africa relative to global populations. A total of 234 pigs sampled in South Africa and consisting of village (n = 91), commercial (n = 60), indigenous (n = 40), Asian (n = 5) and wild (n = 38) populations were genotyped using Porcine SNP60K BeadChip. In addition, 389 genotypes representing village and commercial pigs from America, Europe, and Asia were accessed from a previous study and used to compare population clustering and relationships of South African pigs with global populations. Moderate heterozygosity levels, ranging from 0.204 for Warthogs to 0.371 for village pigs sampled from Capricorn municipality in Eastern Cape province of South Africa were observed. Principal Component Analysis of the South African pigs resulted in four distinct clusters of (i) Duroc; (ii) Vietnamese; (iii) Bush pig and Warthog and (iv) a cluster with the rest of the commercial (SA Large White and Landrace), village, Wild Boar and indigenous breeds of Koelbroek and Windsnyer. The clustering demonstrated alignment with genetic similarities, geographic location and production systems. The PCA with the global populations also resulted in four clusters that where populated with (i) all the village populations, wild boars, SA indigenous and the large white and landraces; (ii) Durocs (iii) Chinese and Vietnamese pigs and (iv) Warthog and Bush pig. K = 10 (The number of population units) was the most probable ADMIXTURE based clustering, which grouped animals according to their populations with the exception of the village pigs that showed presence of admixture. AMOVA reported 19.92%-98.62% of the genetic variation to be within populations. Sub structuring was observed between South African commercial populations as well as between Indigenous and commercial breeds. Population pairwise F ST analysis showed genetic differentiation (P ≤ 0.05) between the village, commercial and wild populations. A per marker per population pairwise F ST analysis revealed SNPs associated with QTLs for traits such as meat quality, cytoskeletal and muscle development, glucose metabolism processes and growth factors between both domestic populations as well as between wild and domestic breeds. Overall, the study provided a baseline understanding of porcine diversity and an important foundation for porcine genomics of South African populations.
Collapse
Affiliation(s)
- Nompilo Lucia Hlongwane
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Pranisha Soma
- Animal Production Institute, Agricultural Research Council, Irene, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | | |
Collapse
|
23
|
Population structure of indigenous southern African goats based on the Illumina Goat50K SNP panel. Trop Anim Health Prod 2020; 52:1795-1802. [PMID: 31907723 DOI: 10.1007/s11250-019-02190-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/22/2019] [Indexed: 01/16/2023]
Abstract
In this study, the genetic structure of indigenous Tswana and Swazi goats using the Illumina Goat50K SNP array was investigated. Two South African commercial goat breeds were included to investigate admixture with the indigenous populations in southern Africa. A total of 144 DNA samples including Boer goats (n = 24), Kalahari Red (n = 24), Swazi (n = 48), and Tswana goats (n = 48) were genotyped. Statistical analysis was performed using PLINK version 1.07. Genetic diversity, measured as expected heterozygosity, was estimated at 0.390, 0.398, 0.413, and 0.387 for Boer, Kalahari Red, Tswana, and Swazi goats, respectively. The individual inbreeding coefficient varied from 0.019 ± 0.05 to 0.011 ± 0.06 for the Tswana and Swazi goats, respectively. The Principal component analysis clustered the populations according to geographical origin and breed type. Linkage disequilibrium (LD) for shorter intervals (0-10 kb) ranged from 0.44 to 0.56 and commercial breeds had higher values. Effective population sizes decreased with generations and at the 13th generation ranged between 87 for Boer to 266 for Tswana goats. The Tswana population exhibited the highest level of genetic variation and effective population size, which holds potential for improved production in marginal regions. A national strategy is required to maintain genetic diversity in communal goat production systems through well-structured breeding and conservation programs.
Collapse
|
24
|
Abstract
Goats have a key role in ensuring food security and economic livelihood to smallholder farmers in rural areas. Women play a vital role in goat rearing, promoting economic autonomy within households. Indigenous goats dominate and are of high significance due to their adaptive traits that are relevant for climate change and low maintenance. However, lack of emphasis on farmer-centered technology development and proper breed characterization remains a hitch to sustainable utilization and breed development of indigenous goats. This can be over come through proper linkage between market and production, workable regional and national agricultural policies, community breeding programs, collaborative research work within the region, and consistent government support.
Collapse
|
25
|
Ncube KT, Hadebe K, Dzomba EF, Soma P, Frylinck L, Muchadeyi FC. Relationship between population genomic structure and growth profiles of South African goats under different production systems. Trop Anim Health Prod 2019; 52:1277-1286. [PMID: 31853786 DOI: 10.1007/s11250-019-02128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
Goats play a major role in poor marginalized communities of South Africa for food security and socio-economic purposes. Majority of the goats are raised in villages with poor infrastructure and resources, therefore facing challenges that affect growth performance which leads to low mature weights. Investigating growth profiles will shed light on growth performances and will aid in goat improvement and selection. This study investigated the growth profiles and genomic structure of SA indigenous breeds raised in different production systems to unravel the genetic potential of indigenous goat populations. Live weights and morphological body measurements were collected from a total of 83 kids representing the commercial meat-producing SA Boer (n = 14); the indigenous veld goats (IVG) of NC Skilder (n = 14), Mbuzi (n = 13), and Xhosa lob (n = 14) raised under intensive systems; and nondescript village goat populations (n = 14) raised in intensive and others (n = 14) raised in extensive production systems. The remaining 72 of 83 phenotyped goats were genotyped using the Illumina Caprine SNP50K BeadChip. The SA Boer had a higher weight (28.96 ± 0.30 kg) gain as compared to other populations. The Mbuzi population was the smallest (14.83 ± 0.33 kg), while the village goats raised in Pella Village were relatively smaller (17.55 ± 0.37 kg) than those raised on the research farm (19.55 ± 0.36 kg). The study concluded that both genetics and management systems can lead to improved growth performance in goat production. The outputs of this study can be used to identify suitable breeds and potential genotypes for optimal growth and establish optimal goat management systems suitable for communal farmers for improved productivity.
Collapse
Affiliation(s)
- K T Ncube
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.,Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - K Hadebe
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| | - E F Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - P Soma
- Animal Production, Agricultural Research Council, Private Bag X2, Irene, 0062, South Africa
| | - L Frylinck
- Animal Production, Agricultural Research Council, Private Bag X2, Irene, 0062, South Africa
| | - F C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa. .,Department of Life and Consumer Science, College of Agriculture and Environmental Science, University of South Africa, Private Bag X6, Florida, 1709, South Africa.
| |
Collapse
|
26
|
Michailidou S, Tsangaris GT, Tzora A, Skoufos I, Banos G, Argiriou A, Arsenos G. Analysis of genome-wide DNA arrays reveals the genomic population structure and diversity in autochthonous Greek goat breeds. PLoS One 2019; 14:e0226179. [PMID: 31830089 PMCID: PMC6907847 DOI: 10.1371/journal.pone.0226179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Goats play an important role in the livestock sector in Greece. The national herd consists mainly of two indigenous breeds, the Eghoria and Skopelos. Here, we report the population structure and genomic profiles of these two native goat breeds using Illumina’s Goat SNP50 BeadChip. Moreover, we present a panel of candidate markers acquired using different genetic models for breed discrimination. Quality control on the initial dataset resulted in 48,841 SNPs kept for downstream analysis. Principal component and admixture analyses were applied to assess population structure. The rate of inbreeding within breed was evaluated based on the distribution of runs of homozygosity in the genome and respective coefficients, the genomic relationship matrix, the patterns of linkage disequilibrium, and the historic effective population size. Results showed that both breeds exhibit high levels of genetic diversity. Level of inbreeding between the two breeds estimated by the Wright’s fixation index FST was low (Fst = 0.04362), indicating the existence of a weak genetic differentiation between them. In addition, grouping of farms according to their geographical locations was observed. This study presents for the first time a genome-based analysis on the genetic structure of the two indigenous Greek goat breeds and identifies markers that can be potentially exploited in future selective breeding programs for traceability purposes, targeted genetic improvement schemes and conservation strategies.
Collapse
Affiliation(s)
- S. Michailidou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
- * E-mail:
| | - G. Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A. Tzora
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - I. Skoufos
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - G. Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland's Rural College and The Roslin Institute University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - A. Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Yoshida GM, Barria A, Correa K, Cáceres G, Jedlicki A, Cadiz MI, Lhorente JP, Yáñez JM. Genome-Wide Patterns of Population Structure and Linkage Disequilibrium in Farmed Nile Tilapia ( Oreochromis niloticus). Front Genet 2019; 10:745. [PMID: 31552083 PMCID: PMC6737105 DOI: 10.3389/fgene.2019.00745] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/16/2019] [Indexed: 01/29/2023] Open
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most produced farmed fish in the world and represents an important source of protein for human consumption. Farmed Nile tilapia populations are increasingly based on genetically improved stocks, which have been established from admixed populations. To date, there is scarce information about the population genomics of farmed Nile tilapia, assessed by dense single nucleotide polymorphism (SNP) panels. The patterns of linkage disequilibrium (LD) may affect the success of genome-wide association studies (GWAS) and genomic selection (GS), and also provide key information about demographic history of farmed Nile tilapia populations. The objectives of this study were to provide further knowledge about the population structure and LD patterns, as well as, estimate the effective population size (N e ) for three farmed Nile tilapia populations, one from Brazil (POP A) and two from Costa Rica (POP B and POP C). A total of 55 individuals from each population, were genotyped using a 50K SNP panel selected from a whole-genome sequencing (WGS) experiment. The first two principal components explained about 20% of the total variation and clearly differentiated between the three populations. Population genetic structure analysis showed evidence of admixture, especially for POP C. The contemporary N e estimated, based on LD values, ranged from 78 to 159. No differences were observed in the LD decay among populations, with a rapid decrease of r 2 with increasing inter-marker distance. Average r 2 between adjacent SNP pairs ranged from 0.19 to 0.03 for both POP A and C, and 0.20 to 0.03 f or POP B. Based on the number of independent chromosome segments in the Nile tilapia genome, at least 9.4, 7.6, and 4.6K SNPs for POP A, POP B, and POP C respectively, are required for the implementation of GS in the present farmed Nile tilapia populations.
Collapse
Affiliation(s)
- Grazyella M. Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I. Cadiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
28
|
Isa AM, Bemji MN, Wheto M, Williams TJ, Ibeagha-Awemu EM. Characterization of gonadotropin releasing hormone receptor gene in Sokoto and Kalahari Red goats. Anim Reprod Sci 2019; 208:106109. [PMID: 31405467 DOI: 10.1016/j.anireprosci.2019.106109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/18/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
The objective of this study was to characterize GnRHR gene in Sokoto (n = 70) and Kalahari Red (n = 70) goats. Three SNPs, (g.-29T > G, g.48 G > A and g.209 T > G), were detected in Sokoto Red (SR) and one (g.48 G > A) in Kalahari Red (KR) goats. All the mutations occurred within the 5'UTR and Exon one of the gene and the g.209 T > G was non-synonymous and, therefore, resulted in an amino acid change from methionine to arginine at Position 70 of the GnRHR polypeptide. The homozygous mutant genotypes at the three SNP loci were not detected in both breeds but minor allele frequencies were ≥ 0.1 for the three SNP loci in SR goats. Frequency of the T allele, however, was 0.93 at the only SNP locus detected in KR goats. There was a strong linkage disequilibrium (LD; r2>0.98) among the detected mutations in SR goats resulting in two haplotypes (T-G-T and G-A-G) with a frequency of 86% and 13%, respectively. There was no significant association between genotypes at the polymorphic loci and litter size (P > 0.05) in the two breeds. The non-synonymous mutation (g.209T>G) appears to have changed the nucleotide binding region and area spanning exposed/buried regions on the predicted secondary structure of the two variants of the receptor. This change led to variation in the tertiary structure between the two variants of the receptor and can influence the function of the transmembrane receptor. Comparison of the GnRH receptor domains for goats, sheep, cattle and swine confirmed that the seven transmembrane domains of the receptor are conserved in all the farm animals considered.
Collapse
Affiliation(s)
- Adamu Mani Isa
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria; Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria; Key Laboratory of Animal Genetics, Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Martha N Bemji
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mathew Wheto
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tolulope J Williams
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | |
Collapse
|
29
|
Berihulay H, Islam R, Jiang L, Ma Y. Genome-Wide Linkage Disequilibrium and the Extent of Effective Population Sizes in Six Chinese Goat Populations Using a 50K Single Nucleotide Polymorphism Panel. Animals (Basel) 2019; 9:ani9060350. [PMID: 31200540 PMCID: PMC6617254 DOI: 10.3390/ani9060350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Information on linkage disequilibrium (LD) and the extent of effective population size (Ne) has important implications for exploring the degree of biological diversity, for predicting underlying selection pressure, and for designing animal breeding programs. In this study, we assessed LD, Ne, and the distribution of minor allele frequency in six goat populations. Accordingly, the results of LD and Ne using a single nucleotide polymorphism (SNP) panel (Caprine SNP 50K BeadChip, Lincoln, NE, USA) are helpful for the sustainable conservation, proper management, and utilization of Chinese goat populations. Abstract Genome-wide linkage disequilibrium is a useful parameter to study quantitative trait locus (QTL) mapping and genetic selection. In many genomic methodologies, effective population size is an important genetic parameter because of its relationship to the loss of genetic variation, increases in inbreeding, the accumulation of mutations, and the effectiveness of selection. In this study, a total of 193 individuals were genotyped to assess the extent of LD and Ne in six Chinese goat populations using the SNP 50K BeadChip. Across the determined autosomal chromosomes, we found an average of 0.02 and 0.23 for r2 and D’ values, respectively. The average r2 between all the populations varied little and ranged from 0.055 r2 for the Jining Grey to 0.128 r2 for the Guangfeng, with an overall mean of 0.083. Across the 29 autosomal chromosomes, minor allele frequency (MAF) was highest on chromosome 1 (0.321) and lowest on chromosome 25 (0.309), with an average MAF of 0.317, and showing the lowest (25.5% for Louping) and highest (28.8% for Qingeda) SNP proportions at MAF values > 0.3. The inbreeding coefficient ranged from 0.064 to 0.085, with a mean of 0.075 for all the autosomes. The Jining Grey and Qingeda populations showed higher Ne estimates, highlighting that these animals could have been influenced by artificial selection. Furthermore, a declining recent Ne was distinguished for the Arbas Cashmere and Guangfeng populations, and their estimated values were closer to 64 and 95, respectively, 13 generations ago, which indicates that these breeds were exposed to strong selection. This study provides an insight into valuable genetic information and will open up the opportunity for further genomic selection analysis of Chinese goat populations.
Collapse
Affiliation(s)
- Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Rabiul Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
30
|
Ibeagha-Awemu EM, Peters SO, Bemji MN, Adeleke MA, Do DN. Leveraging Available Resources and Stakeholder Involvement for Improved Productivity of African Livestock in the Era of Genomic Breeding. Front Genet 2019; 10:357. [PMID: 31105739 PMCID: PMC6499167 DOI: 10.3389/fgene.2019.00357] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/03/2019] [Indexed: 01/13/2023] Open
Abstract
The African continent is home to diverse populations of livestock breeds adapted to harsh environmental conditions with more than 70% under traditional systems of management. Animal productivity is less than optimal in most cases and is faced with numerous challenges including limited access to adequate nutrition and disease management, poor institutional capacities and lack of adequate government policies and funding to develop the livestock sector. Africa is home to about 1.3 billion people and with increasing demand for animal proteins by an ever growing human population, the current state of livestock productivity creates a significant yield gap for animal products. Although a greater section of the population, especially those living in rural areas depend largely on livestock for their livelihoods; the potential of the sector remains underutilized and therefore unable to contribute significantly to economic development and social wellbeing of the people. With current advances in livestock management practices, breeding technologies and health management, and with inclusion of all stakeholders, African livestock populations can be sustainably developed to close the animal protein gap that exists in the continent. In particular, advances in gene technologies, and application of genomic breeding in many Western countries has resulted in tremendous gains in traits like milk production with the potential that, implementation of genomic selection and other improved practices (nutrition, healthcare, etc.) can lead to rapid improvement in traits of economic importance in African livestock populations. The African livestock populations in the context of this review are limited to cattle, goat, pig, poultry, and sheep, which are mainly exploited for meat, milk, and eggs. This review examines the current state of livestock productivity in Africa, the main challenges faced by the sector, the role of various stakeholders and discusses in-depth strategies that can enable the application of genomic technologies for rapid improvement of livestock traits of economic importance.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA, United States
| | - Martha N. Bemji
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Abeokuta, Nigeria
| | - Matthew A. Adeleke
- School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Duy N. Do
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| |
Collapse
|
31
|
Berihulay H, Li Y, Liu X, Gebreselassie G, Islam R, Liu W, Jiang L, Ma Y. Genetic diversity and population structure in multiple Chinese goat populations using a SNP panel. Anim Genet 2019; 50:242-249. [PMID: 30883837 DOI: 10.1111/age.12776] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 11/30/2022]
Abstract
Information about genetic diversity and population structure among goat breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds. Here, we measured genetic diversity and population structure in multiple Chinese goat populations, namely, Nanjiang, Qinggeda, Arbas Cashmere, Jining Grey, Luoping Yellow and Guangfeng goats. A total of 193 individuals were genotyped for about 47 401 autosomal single nucleotide polymorphisms (SNPs). We found a high proportion of informative SNPs, ranging from 69.5% in the Luoping Yellow to 93.9% in the Jining Grey goat breeds with an average mean of 84.7%. Diversity, as measured by expected heterozygosity, ranged from 0.371 in Luoping Yellow to 0.405 in Jining Grey goat populations. The average estimated pair-wise genetic differentiation (FST ) among the populations was 8.6%, ranging from 0.2% to 16% and indicating low to moderate genetic differentiation. Principal component analysis, genetic structure and phylogenetic tree analysis revealed a clustering of six Chinese goat populations according to geographic distribution. The results from this study can contribute valuable genetic information and can properly assist with within-breed diversity, which provides a good opportunity for sustainable utilization of and maintenance of genetic resource improvements in the Chinese goat populations.
Collapse
Affiliation(s)
- H Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Y Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - X Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - G Gebreselassie
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - R Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - W Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - L Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Y Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| |
Collapse
|
32
|
Deng T, Liang A, Liu J, Hua G, Ye T, Liu S, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Riaz H, Liang X, Yang L. Genome-Wide SNP Data Revealed the Extent of Linkage Disequilibrium, Persistence of Phase and Effective Population Size in Purebred and Crossbred Buffalo Populations. Front Genet 2019; 9:688. [PMID: 30671082 PMCID: PMC6332145 DOI: 10.3389/fgene.2018.00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023] Open
Abstract
Linkage disequilibrium (LD) is a useful parameter for guiding the accuracy and power of both genome-wide association studies (GWAS) and genomic selection (GS) among different livestock species. The present study evaluated the extent of LD, persistence of phase and effective population size (Ne) for the purebred (Mediterranean buffalo; n = 411) and crossbred [Mediterranean × Jianghan × Nili-Ravi buffalo, n = 9; Murrah × Nili-Ravi × local (Xilin or Fuzhong) buffalo, n = 36] buffalo populations using the 90K Buffalo SNP genotyping array. The results showed that the average square of correlation coefficient (r 2) between adjacent SNP was 0.13 ± 0.19 across all autosomes for purebred and 0.09 ± 0.13 for crossbred, and the most rapid decline in LD was observed over the first 200 kb. Estimated r 2 ≥ 0.2 extended up to ~50 kb in crossbred and 170 kb in purebred populations, while average r 2 values ≥0.3 were respectively observed in the ~10 and 60 kb in the crossbred and purebred populations. The largest phase correlation (R P, C = 0.47) was observed at the distance of 100 kb, suggesting that this phase was not actively preserved between the two populations. Estimated Ne for the purebred and crossbred population at the current generation was 387 and 113 individuals, respectively. These findings may provide useful information to guide the GS and GWAS in buffaloes.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiajia Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tingzhu Ye
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shenhe Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Graham Plastow
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chunyan Zhang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Martino Cassandro
- Department of Agronomy Food Natural Resources Animal Environmental, University of Padova, Legnaro, Italy
| | - Hasan Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xianwei Liang
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Barria A, López ME, Yoshida G, Carvalheiro R, Lhorente JP, Yáñez JM. Population Genomic Structure and Genome-Wide Linkage Disequilibrium in Farmed Atlantic Salmon ( Salmo salar L.) Using Dense SNP Genotypes. Front Genet 2018; 9:649. [PMID: 30619473 PMCID: PMC6302115 DOI: 10.3389/fgene.2018.00649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
Chilean Farmed Atlantic salmon (Salmo salar) populations were established with individuals of both European and North American origins. These populations are expected to be highly genetically differentiated due to evolutionary history and poor gene flow between ancestral populations from different continents. The extent and decay of linkage disequilibrium (LD) among single nucleotide polymorphism (SNP) impacts the implementation of genome-wide association studies and genomic selection and provides relevant information about demographic processes of fish populations. We assessed the population structure and characterized the extent and decay of LD in three Chilean commercial populations of Atlantic salmon with North American (NAM), Scottish (SCO), and Norwegian (NOR) origin. A total of 123 animals were genotyped using a 159 K SNP Axiom® myDesignTM Genotyping Array. A total of 32 K SNP markers, representing the common SNPs along the three populations after quality control were used. The principal component analysis explained 78.9% of the genetic diversity between populations, clearly discriminating between populations of North American and European origin, and also between European populations. NAM had the lowest effective population size, followed by SCO and NOR. Large differences in the LD decay were observed between populations of North American and European origin. An r 2 threshold of 0.2 was estimated for marker pairs separated by 7,800, 64, and 50 kb in the NAM, SCO, and NOR populations, respectively. In this study we show that this SNP panel can be used to detect association between markers and traits of interests and also to capture high-resolution information for genome-enabled predictions. Also, we suggest the feasibility to achieve similar prediction accuracies using a smaller SNP data set for the NAM population, compared with samples with European origin which would need a higher density SNP array.
Collapse
Affiliation(s)
- Agustin Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Grazyella Yoshida
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Roberto Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
- Benchmark Genetic S.A., Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
34
|
Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A, Daly KG, Del Corvo M, Guldbrandtsen B, Lenstra JA, Rosen BD, Vajana E, Catillo G, Joost S, Nicolazzi EL, Rochat E, Rothschild MF, Servin B, Sonstegard TS, Steri R, Van Tassell CP, Ajmone-Marsan P, Crepaldi P, Stella A. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol 2018; 50:58. [PMID: 30449284 PMCID: PMC6240949 DOI: 10.1186/s12711-018-0422-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Goat populations that are characterized within the AdaptMap project cover a large part of the worldwide distribution of this species and provide the opportunity to assess their diversity at a global scale. We analysed genome-wide 50 K single nucleotide polymorphism (SNP) data from 144 populations to describe the global patterns of molecular variation, compare them to those observed in other livestock species, and identify the drivers that led to the current distribution of goats. RESULTS A high degree of genetic variability exists among the goat populations studied. Our results highlight a strong partitioning of molecular diversity between and within continents. Three major gene pools correspond to goats from Europe, Africa and West Asia. Dissection of sub-structures disclosed regional gene pools, which reflect the main post-domestication migration routes. We also identified several exchanges, mainly in African populations, and which often involve admixed and cosmopolitan breeds. Extensive gene flow has taken place within specific areas (e.g., south Europe, Morocco and Mali-Burkina Faso-Nigeria), whereas elsewhere isolation due to geographical barriers (e.g., seas or mountains) or human management has decreased local gene flows. CONCLUSIONS After domestication in the Fertile Crescent in the early Neolithic era (ca. 12,000 YBP), domestic goats that already carried differentiated gene pools spread to Europe, Africa and Asia. The spread of these populations determined the major genomic background of the continental populations, which currently have a more marked subdivision than that observed in other ruminant livestock species. Subsequently, further diversification occurred at the regional level due to geographical and reproductive isolation, which was accompanied by additional migrations and/or importations, the traces of which are still detectable today. The effects of breed formation were clearly detected, particularly in Central and North Europe. Overall, our results highlight a remarkable diversity that occurs at the global scale and is locally partitioned and often affected by introgression from cosmopolitan breeds. These findings support the importance of long-term preservation of goat diversity, and provide a useful framework for investigating adaptive introgression, directing genetic improvement and choosing breeding targets.
Collapse
Affiliation(s)
- Licia Colli
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy. .,BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza, Italy.
| | - Marco Milanesi
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,School of Veterinary Medicine, Department of Support, Production and Animal Health, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Andrea Talenti
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, USA.,National Institute of Aquatic Resources, Technical University of Denmark, DTU, Lyngby, Denmark
| | - Minhui Chen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Århus, Denmark.,Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alessandra Crisà
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Kevin Gerard Daly
- Population Genetics Lab, Smurfit Institute of Genetics, Trinity College of Dublin, Dublin, Ireland
| | - Marcello Del Corvo
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Århus, Denmark
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Elia Vajana
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gennaro Catillo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Bertrand Servin
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Roberto Steri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Paolo Ajmone-Marsan
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Paola Crepaldi
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Alessandra Stella
- Fondazione Parco Tecnologico Padano, Lodi, Italy.,Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | |
Collapse
|
35
|
Kumar C, Song S, Dewani P, Kumar M, Parkash O, Ma Y, Malhi KK, Yang N, Mwacharo JM, He X, Jiang L. Population structure, genetic diversity and selection signatures within seven indigenous Pakistani goat populations. Anim Genet 2018; 49:592-604. [PMID: 30229969 DOI: 10.1111/age.12722] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Goat farming in Pakistan depends on indigenous breeds that have adapted to specific agro-ecological conditions. Pakistan has a rich resource of goat breeds, and the genetic diversity of these goat breeds is largely unknown. In this study, genetic diversity and population structure were characterized from seven indigenous goat breeds using the goat 50K SNP chip. The genetic diversity analysis showed that Bugi toori goats have the highest inbreeding level, consistent with the highest linkage disequilibrium, lowest diversity and long run of heterozygosity segments. This indicates that this breed should be prioritized in future conservation activities. The population structure analysis revealed four fairly distinct clusters (including Bugi toori, Bari, Black Tapri and some Kamori) and three other breeds that are seemingly the results of admixture between these or related groups (some Kamori, Pateri, Tapri and White Tapri). The selection signatures were evaluated in each breed. A total of 2508 putative selection signals were reported. The 26 significant windows were identified in more than four breeds, and selection signatures spanned several genes that directly or indirectly influence traits included coat colour variation (KIT), reproduction (BMPR1B, GNRHR, INSL6, JAK2 and EGR4), body size (SOCS2), ear size (MSRB3) and milk composition (ABCG2, SPP1, CSN1S2, CSN2, CSN3 and PROLACTIN).
Collapse
Affiliation(s)
- C Kumar
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan.,Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - S Song
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - P Dewani
- Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan
| | - M Kumar
- Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - O Parkash
- Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan
| | - Y Ma
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - K K Malhi
- Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - N Yang
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - J M Mwacharo
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - X He
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - L Jiang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| |
Collapse
|
36
|
van Marle-Köster E, Visser C. Genetic Improvement in South African Livestock: Can Genomics Bridge the Gap Between the Developed and Developing Sectors? Front Genet 2018; 9:331. [PMID: 30190725 PMCID: PMC6115519 DOI: 10.3389/fgene.2018.00331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
South Africa (SA) holds a unique position on the African continent with a rich diversity in terms of available livestock resources, vegetation, climatic regions and cultures. The livestock sector has been characterized by a dual system of a highly developed commercial sector using modern technology vs. a developing sector including emerging and smallholder farmers. Emerging farmers typically aim to join the commercial sector, but lag behind with regard to the use of modern genetic technologies, while smallholder farmers use traditional practices aimed at subsistence. Several factors influence potential application of genomics by the livestock industries, which include available research funding, socio-economic constraints and extension services. State funded Beef and Dairy genomic programs have been established with the aim of building reference populations for genomic selection with most of the potential beneficiaries in the well-developed commercial sector. The structure of the beef, dairy and small stock industries is fragmented and the outcomes of selection strategies are not perceived as an advantage by the processing industry or the consumer. The indigenous and local composites represent approximately 40% of the total beef and sheep populations and present valuable genetic resources. Genomic research has mostly provided insight on genetic biodiversity of these resources, with limited attention to novel phenotypes associated with adaptation or disease tolerance. Genetic improvement of livestock through genomic technology needs to address the role of adapted breeds in challenging environments, increasing reproductive and growth efficiency. National animal recording schemes contributed significantly to progress in the developed sector with regard to genetic evaluations and estimated breeding values (EBV) as a selection tool over the past three decades. The challenge remains on moving the focus to novel traits for increasing efficiency and addressing welfare and environmental issues. Genetic research programs are required that will be directed to bridge the gap between the elite breeders and the developing livestock sector. The aim of this review was to provide a perspective on the dichotomy in the South African livestock sector arguing that a realistic approach to the use of genomics in beef, dairy and small stock is required to ensure sustainable long term genetic progress.
Collapse
Affiliation(s)
- Esté van Marle-Köster
- Department of Animal and Wildlife Sciences, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, South Africa
| | - Carina Visser
- Department of Animal and Wildlife Sciences, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
37
|
E G, Zhao Y, Chen L, Ma Y, Chu M, Li X, Hong Q, Li L, Guo J, Zhu L, Han Y, Gao H, Zhang J, Jiang H, Jiang C, Wang G, Ren H, Jin M, Sun Y, Zhou P, Huang Y. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA. Ecol Evol 2018; 8:5111-5123. [PMID: 29876086 PMCID: PMC5980450 DOI: 10.1002/ece3.4100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.
Collapse
Affiliation(s)
- Guang‐Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Yong‐Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Li‐Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Yue‐Hui Ma
- Institute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming‐Xing Chu
- Institute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiang‐Long Li
- College of Animal Science and TechnologyHebei Normal University of Science & TechnologyQinghuangdaoChina
| | - Qiong‐Hua Hong
- Yunnan Animal Scinence and Veterinary InstituteKunmingChina
| | - Lan‐Hui Li
- College of Animal Science and TechnologyAgricultural University of HebeiBaoding, HebeiChina
| | - Ji‐Jun Guo
- Animal Husbandry Station of Qinghai ProvinceXining, QinghaiChina
| | - Lan Zhu
- Yunnan Animal Scinence and Veterinary InstituteKunmingChina
| | - Yan‐Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Hui‐Jiang Gao
- Institute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jia‐Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Huai‐Zhi Jiang
- Animal Science and Technology CollegeJilin Agriculture UniversityChangchun, JilinChina
| | - Cao‐De Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Gao‐Fu Wang
- Chongqing Academy of Animal SciencesChongqingChina
| | | | - Mei‐Lan Jin
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Yuan‐Zhi Sun
- Wuhan Tianyi Huiyuan Bioscience & Technology IncWuhanChina
| | - Peng Zhou
- Chongqing Academy of Animal SciencesChongqingChina
| | - Yong‐Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| |
Collapse
|
38
|
Landscape genomics and pathway analysis to understand genetic adaptation of South African indigenous goat populations. Heredity (Edinb) 2018; 120:369-378. [PMID: 29422506 DOI: 10.1038/s41437-017-0044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
In Africa, extensively raised livestock populations in most smallholder farming communities are exposed to harsh and heterogeneous climatic conditions and disease pathogens that they adapt to in order to survive. Majority of these livestock species, including goats, are of non-descript and uncharacterized breeds and their response to natural selection presented by heterogeneous environments is still unresolved. This study investigated genetic diversity and its association with environmental and geographic conditions in 194 South African indigenous goats from different geographic locations genotyped on the Illumina goat SNP50K panel. Population structure analysis revealed a homogeneous genetic cluster of the Tankwa goats, restricted to the Northern Cape province. Overall, the Boer, Kalahari Red, and Savanna showed a wide geographic spread of shared genetic components, whereas the village ecotypes revealed a longitudinal distribution. The relative importance of environmental factors on genetic variation of goat populations was assessed using redundancy analysis (RDA). Climatic and geographic variables explained 22% of the total variation while climatic variables alone accounted for 17% of the diversity. Geographic variables solitarily explained 1% of the total variation. The first axis (Model I) of the RDA analysis revealed 329 outlier SNPs. Landscape genomic approaches of spatial analysis method (SAM) identified a total of 843 (1.75%) SNPs, while latent factor mixed models (LFMM) identified 714 (1.48%) SNPs significantly associated with environmental variables. Significant markers were within genes involved in biological functions potentially important for environmental adaptation. Overall, the study suggested environmental factors to have some effect in shaping the genetic variation of South African indigenous goat populations. Loci observed to be significant and under selection may be responsible for the adaption of the goat populations to local production systems.
Collapse
|
39
|
Onzima RB, Upadhyay MR, Mukiibi R, Kanis E, Groenen MAM, Crooijmans RPMA. Genome-wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds. Anim Genet 2018; 49:59-70. [PMID: 29344947 PMCID: PMC5838551 DOI: 10.1111/age.12631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2017] [Indexed: 12/18/2022]
Abstract
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium‐density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO) and expected (HE) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub‐structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within‐breed diversity and heterozygote advantage in crossbreeding schemes.
Collapse
Affiliation(s)
- R B Onzima
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands.,National Agricultural Research Organization (NARO), P O Box 295, Entebbe, Uganda
| | - M R Upadhyay
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - R Mukiibi
- Department of Agriculture, Food and Nutritional Sciences (AFNS), Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, 1416 College Plaza Edmonton, T6G 2C8, Alberta, Canada
| | - E Kanis
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands
| | - M A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands
| | - R P M A Crooijmans
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands
| |
Collapse
|
40
|
Bemji MN, Isa AM, Ibeagha-Awemu EM, Wheto M. Polymorphisms of caprine GnRHR gene and their association with litter size in West African Dwarf goats. Mol Biol Rep 2017; 45:63-69. [PMID: 29288425 DOI: 10.1007/s11033-017-4141-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/18/2017] [Indexed: 12/01/2022]
Abstract
Gonadotropin-releasing hormone receptor (GnRHR) gene is considered a candidate gene for litter size due to its critical role in regulating the activities of hypothalamo-pituitary-gonadal axis which synthesizes and releases gonadotropins. This study was designed to identify mutations within the caprine GnRHR gene and investigate their association with litter size at various parities. Polymorphisms scanning and genotyping of GnRHR gene in West African Dwarf (WAD) goats (n = 226) revealed three single nucleotide polymorphisms (SNPs), one mutation (g.-29T > G) was detected within 5'UTR region while two others (g.48G > A and g.209T > G) were identified in exon 1. Mutation at g.209T > G locus resulted in amino acid change from Methionine to Arginine at position 70 on the polypeptide residue. Based on heterozygosity and polymorphism information content (PIC), WAD goat population diversity at the SNP loci was moderate. Strong linkage disequilibrium (LD) (r2 > 0.98) existed among the detected mutations resulting in three observed haplotypes, two (T-G-T and G-A-G) had cumulative frequency of > 97%. The mutation within 5'UTR region of GnRHR gene (g.-29T > G) is novel, being reported in goats for the first time. Association analysis revealed a significant (p < 0.05) association between allele G at g.-29T > G with higher mean litter size for homozygous (GG) mutant does compared with heterozygotes (GT) or homozygotes (TT), while the relationship between SNPs at the two loci detected in exon 1 and litter size was not significant.
Collapse
Affiliation(s)
- M N Bemji
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria.
| | - A M Isa
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria.,Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - E M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Center, Sherbrooke, QC, Canada
| | - M Wheto
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
41
|
Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat. Sci Rep 2017; 7:8621. [PMID: 28819310 PMCID: PMC5561203 DOI: 10.1038/s41598-017-09285-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/14/2017] [Indexed: 01/24/2023] Open
Abstract
Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.
Collapse
|
42
|
Mdladla K, Dzomba EF, Muchadeyi FC. The potential of landscape genomics approach in the characterization of adaptive genetic diversity in indigenous goat genetic resources: A South African perspective. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|