1
|
Feng X, Diao S, Liu Y, Xu Z, Li G, Ma Y, Su Z, Liu X, Li J, Zhang Z. Exploring the mechanism of artificial selection signature in Chinese indigenous pigs by leveraging multiple bioinformatics database tools. BMC Genomics 2023; 24:743. [PMID: 38053015 PMCID: PMC10699062 DOI: 10.1186/s12864-023-09848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs in Yunnan exhibit considerable phenotypic diversity, but their population structure and the biological interpretation of signatures of artificial selection require further investigation. To uncover population genetic diversity, migration events, and artificial selection signatures in Chinese domestic pigs, we sampled 111 Yunnan pigs from four breeds in Yunnan which is considered to be one of the centres of livestock domestication in China, and genotyped them using Illumina Porcine SNP60K BeadChip. We then leveraged multiple bioinformatics database tools to further investigate the signatures and associated complex traits. RESULTS Population structure and migration analyses showed that Diannanxiaoer pigs had different genetic backgrounds from other Yunnan pigs, and Gaoligongshan may undergone the migration events from Baoshan and Saba pigs. Intriguingly, we identified a possible common target of sharing artificial selection on a 265.09 kb region on chromosome 5 in Yunnan indigenous pigs, and the genes on this region were associated with cardiovascular and immune systems. We also detected several candidate genes correlated with dietary adaptation, body size (e.g., PASCIN1, GRM4, ITPR2), and reproductive performance. In addition, the breed-sharing gene MMP16 was identified to be a human-mediated gene. Multiple lines of evidence at the mammalian genome, transcriptome, and phenome levels further supported the evidence for the causality between MMP16 variants and the metabolic diseases, brain development, and cartilage tissues in Chinese pigs. Our results suggested that the suppression of MMP16 would directly lead to inactivity and insensitivity of neuronal activity and skeletal development in Chinese indigenous pigs. CONCLUSION In this study, the population genetic analyses and identification of artificial selection signatures of Yunnan indigenous pigs help to build an understanding of the effect of human-mediated selection mechanisms on phenotypic traits in Chinese indigenous pigs. Further studies are needed to fully characterize the process of human-mediated genes and biological mechanisms.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangzhen Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Su
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Lin X, Zhang N, Song H, Lin K, Pang E. Population-specific, recent positive selection signatures in cultivated Cucumis sativus L. (cucumber). G3 GENES|GENOMES|GENETICS 2022; 12:6585339. [PMID: 35554526 PMCID: PMC9258548 DOI: 10.1093/g3journal/jkac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
Population-specific, positive selection promotes the diversity of populations and drives local adaptations in the population. However, little is known about population-specific, recent positive selection in the populations of cultivated cucumber (Cucumis sativus L.). Based on a genomic variation map of individuals worldwide, we implemented a Fisher’s combination method by combining 4 haplotype-based approaches: integrated haplotype score (iHS), number of segregating sites by length (nSL), cross-population extended haplotype homozygosity (XP-EHH), and Rsb. Overall, we detected 331, 2,147, and 3,772 population-specific, recent positive selective sites in the East Asian, Eurasian, and Xishuangbanna populations, respectively. Moreover, we found that these sites were related to processes for reproduction, response to abiotic and biotic stress, and regulation of developmental processes, indicating adaptations to their microenvironments. Meanwhile, the selective genes associated with traits of fruits were also observed, such as the gene related to the shorter fruit length in the Eurasian population and the gene controlling flesh thickness in the Xishuangbanna population. In addition, we noticed that soft sweeps were common in the East Asian and Xishuangbanna populations. Genes involved in hard or soft sweeps were related to developmental regulation and abiotic and biotic stress resistance. Our study offers a comprehensive candidate dataset of population-specific, selective signatures in cultivated cucumber populations. Our methods provide guidance for the analysis of population-specific, positive selection. These findings will help explore the biological mechanisms of adaptation and domestication of cucumber.
Collapse
Affiliation(s)
- Xinrui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing 100875, China
| | - Ning Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing 100875, China
| | - Hongtao Song
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing 100875, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing 100875, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
3
|
Chen Z, Ye X, Zhang Z, Zhao Q, Xiang Y, Xu N, Wang Q, Pan Y, Guo X, Wang Z. Genetic diversity and selection signatures of four indigenous pig breeds from eastern China. Anim Genet 2022; 53:506-509. [PMID: 35489815 DOI: 10.1111/age.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Chinese indigenous pig breeds have been undergoing selection for thousands of years, and have become invaluable genetic sources over the world. To investigate the population structure and genetic diversity of Jinhua (JH), Longyou Black (LYW), Shengxian Spotted (SXH), and Lanxi Spotted (LXH) breeds, a total of 200 pigs belonging to 10 diverse population were genotyped using SNP chips. The results showed that LYW pigs exhibited higher level of heterozygosity than the other indigenous pigs. In addition, gene introgression from intensively reared commercial pig breeds to LYW pigs was detected. Moreover, selection signature analysis revealed the possibility of differences between Chinese indigenous and intensively reared commercial pig breeds were mainly present for meat and carcass traits. Furthermore, we found that ANXA13, DISP1, and SRSF6 were the nearest genes located around the common selection signatures detected between each indigenous pig breed and Chinese wild boars. Our findings provide new insights into the selection signatures of Chinese indigenous pigs, and may contribute to future pig breeding.
Collapse
Affiliation(s)
- Zitao Chen
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Ningying Xu
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute, Zhejiang University, Sanya, China
| | - Xiaoling Guo
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ben-Jemaa S, Senczuk G, Ciani E, Ciampolini R, Catillo G, Boussaha M, Pilla F, Portolano B, Mastrangelo S. Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle. Front Genet 2021; 12:675569. [PMID: 33995500 PMCID: PMC8113768 DOI: 10.3389/fgene.2021.675569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
The Maremmana cattle is an ancient Podolian-derived Italian breed raised in semi-wild conditions with distinctive morphological and adaptive traits. The aim of this study was to detect potential selection signatures in Maremmana using medium-density single nucleotide polymorphism array. Putative selection signatures were investigated combining three statistical approaches designed to quantify the excess of haplotype homozygosity either within (integrated haplotype score, iHS) or among pairs of populations (Rsb and XP-EHH), and contrasting the Maremmana with a single reference population composed of a pool of seven Podolian-derived Italian breeds. Overall, the three haplotype-based analyses revealed selection signatures distributed over 19 genomic regions. Of these, six relevant candidate regions were identified by at least two approaches. We found genomic signatures of selective sweeps spanning genes related to mitochondrial function, muscle development, growth, and meat traits (SCIN, THSD7A, ETV1, UCHL1, and MYOD1), which reflects the different breeding schemes between Maremmana (semi-wild conditions) and the other Podolian-derived Italian breeds (semi-extensive). We also identified several genes linked to Maremmana adaptation to the environment of the western-central part of Italy, known to be hyperendemic for malaria and other tick-borne diseases. These include several chemokine (C-C motif) ligand genes crucially involved in both innate and adaptive immune responses to intracellular parasite infections and other genes playing key roles in pulmonary disease (HEATR9, MMP28, and ASIC2) or strongly associated with malaria resistance/susceptibility (AP2B1). Our results provide a glimpse into diverse selection signatures in Maremmana cattle and can be used to enhance our understanding of the genomic basis of environmental adaptation in cattle.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, University of Carthage, Ariana, Tunisia
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Gennaro Catillo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Lodi, Italy
| | - Mekki Boussaha
- INRAE, AgroParisTech, University of Paris Saclay, Saint Aubin, France
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Zhao QB, Oyelami FO, Qadri QR, Sun H, Xu Z, Wang QS, Pan YC. Identifying the unique characteristics of the Chinese indigenous pig breeds in the Yangtze River Delta region for precise conservation. BMC Genomics 2021; 22:151. [PMID: 33653278 PMCID: PMC7927379 DOI: 10.1186/s12864-021-07476-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background China is the country with the most abundant swine genetic resources in the world. Through thousands of years of domestication and natural selection, most of pigs in China have developed unique genetic characteristics. Finding the unique genetic characteristics and modules of each breed is an essential part of their precise conservation. Results In this study, we used the partial least squares method to identify the significant specific SNPs of 19 local Chinese pig breeds and 5 Western pig breeds. A total of 37,514 significant specific SNPs (p < 0.01) were obtained from these breeds, and the Chinese local pig breed with the most significant SNPs was Hongdenglong (HD), followed by Jiaxing black (JX), Huaibei (HB), Bihu (BH), small Meishan (SMS), Shengxian Hua (SH), Jiangquhai (JQ), Mi (MI), Chunan (CA), Chalu (CL), Jinhualiangtouwu (JHL), Fengjing (FJ), middle Meishan (MMS), Shanzhu (SZ), Pudong white (PD), Dongchuan (DC), Erhualian (EH), Shawutou (SW) and Lanxi Hua (LX) pig. Furthermore, we identified the breeds with the most significant genes, GO terms, pathways, and networks using KOBAS and IPA and then ranked them separately. The results showed that the breeds with the highest number of interaction networks were Hongdenglong (12) and Huaibei (12) pigs. In contrast, the breeds with the lowest interaction networks were Shawutou (4) and Lanxi Hua pigs (3), indicating that Hongdenglong and Huaibei pigs might have the most significant genetic modules in their genome, whereas Shawutou and Lanxi Hua pigs may have the least unique characteristics. To some degree, the identified specific pathways and networks are related to the number of genes and SNPs linked to the specific breeds, but they do not appear to be the same. Most importantly, more significant modules were found to be related to the development and function of the digestive system, regulation of diseases, and metabolism of amino acids in the local Chinese pig breeds, whereas more significant modules were found to be related to the growth rate in the Western pig breeds. Conclusion Our results show that each breed has some relatively unique structural modules and functional characteristics. These modules allow us to better understand the genetic differences among local Chinese and Western pig breeds and therefore implement precise conservation methods. This study could provide a basis for formulating more effective strategies for managing and protecting these genetic resources in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07476-7.
Collapse
Affiliation(s)
- Qing-Bo Zhao
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Favour Oluwapelumi Oyelami
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Qamar Raza Qadri
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hao Sun
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhong Xu
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Qi-Shan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, 310030, P.R. China.
| | - Yu-Chun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, 310030, P.R. China.
| |
Collapse
|
6
|
Barrera-Redondo J, Piñero D, Eguiarte LE. Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Front Genet 2020; 11:742. [PMID: 32760427 PMCID: PMC7373799 DOI: 10.3389/fgene.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
In the last decade, genomics and the related fields of transcriptomics and epigenomics have revolutionized the study of the domestication process in plants and animals, leading to new discoveries and new unresolved questions. Given that some domesticated taxa have been more studied than others, the extent of genomic data can range from vast to nonexistent, depending on the domesticated taxon of interest. This review is meant as a rough guide for students and academics that want to start a domestication research project using modern genomic tools, as well as for researchers already conducting domestication studies that are interested in following a genomic approach and looking for alternate strategies (cheaper or more efficient) and future directions. We summarize the theoretical and technical background needed to carry out domestication genomics, starting from the acquisition of a reference genome and genome assembly, to the sampling design for population genomics, paleogenomics, transcriptomics, epigenomics and experimental validation of domestication-related genes. We also describe some examples of the aforementioned approaches and the relevant discoveries they made to understand the domestication of the studied taxa.
Collapse
Affiliation(s)
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Xu Z, Sun H, Zhang Z, Zhang CY, Zhao QB, Xiao Q, Olasege BS, Ma PP, Zhang XZ, Wang QS, Pan YC. Selection signature reveals genes associated with susceptibility loci affecting respiratory disease due to pleiotropic and hitchhiking effect in Chinese indigenous pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:187-196. [PMID: 30744329 PMCID: PMC6946968 DOI: 10.5713/ajas.18.0658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Porcine respiratory disease is one of the most important health problems which causes significant economic losses. OBJECTIVE To understand the genetic basis for susceptibility to swine enzootic pneumonia (EP) in pigs, we detected 102,809 SNPs in a total of 249 individuals based on genome-wide sequencing data. METHODS Genome comparison of three susceptibility to swine EP pig breeds (Jinhua, Erhualian and Meishan) with two western lines that are considered more resistant (Duroc and Landrace) using XP-EHH and FST statistical approaches identified 691 positively selected genes. Based on QTLs, GO terms and literature search, we selected 14 candidate genes that have convincible biological functions associated with swine EP or human asthma. RESULTS Most of these genes were tested by several methods including transcription analysis and candidated genes association study. Among these genes: CYP1A1 and CTNNB1 are involved in fertility; TGFBR3 plays a role in meat quality traits; WNT2, CTNNB1 and TCF7 take part in adipogenesis and fat deposition simultaneously; PLAUR (completely linked to AXL, r2=1) plays an essential role in the successful ovulation of matured oocytes in pigs; CLPSL2 (strongly linked to SPDEF, r2=0.848) is involved in male fertility. CONCLUSION These adverse genes susceptible to swine EP may be selected while selecting for economic traits (especially reproduction traits) due to pleiotropic and hitchhiking effect of linked genes. Our study provided a completely new point of view to understand the genetic basis for susceptibility or resistance to swine EP in pigs thereby, provide insight for designing sustainable breed selection programs. Finally, the candidate genes are crucial due to their potential roles in respiratory diseases in a large number of species, including human.
Collapse
Affiliation(s)
- Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Cheng-Yue Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Qing-bo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Qian Xiao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Babatunde Shittu Olasege
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Pei-Pei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Xiang-Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Qi-Shan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Yu-Chun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
China
- Shanghai Key Laboratory of Veterinary Bio-technology, Shanghai 200240,
China
| |
Collapse
|
8
|
Diao S, Huang S, Chen Z, Teng J, Ma Y, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-Wide Signatures of Selection Detection in Three South China Indigenous Pigs. Genes (Basel) 2019; 10:genes10050346. [PMID: 31067806 PMCID: PMC6563113 DOI: 10.3390/genes10050346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
South China indigenous pigs are famous for their superior meat quality and crude feed tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of Yunnan Province, while Tunchang and Ding’an pigs with saddleback were located in the low-altitude area of Hainan Province. Although these pigs are different in appearance, the underlying genetic differences have not been investigated. In this study, based on the single-nucleotide polymorphism (SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity (XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection in these pig breeds. We found nine potential signatures of selection detected simultaneously by two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference group. In addition, eleven potential signatures of selection detected simultaneously by two methods, annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid biosynthesis—ganglio series. These selection signatures were likely to overlap with quantitative trait loci associated with meat quality traits. Furthermore, one potential selection signature, which was associated with different coat color, was detected in Hainan pigs. These results contribute to a better understanding of the underlying genetic architecture of South China indigenous pigs.
Collapse
Affiliation(s)
- Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuwen Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Xu Z, Sun H, Zhang Z, Zhao Q, Olasege BS, Li Q, Yue Y, Ma P, Zhang X, Wang Q, Pan Y. Assessment of Autozygosity Derived From Runs of Homozygosity in Jinhua Pigs Disclosed by Sequencing Data. Front Genet 2019; 10:274. [PMID: 30984245 PMCID: PMC6448551 DOI: 10.3389/fgene.2019.00274] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Jinhua pig, a well-known Chinese indigenous breed, has evolved as a pig breed with excellent meat quality, greater disease resistance, and higher prolificacy. The reduction in the number of Jinhua pigs over the past years has raised concerns about inbreeding. Runs of homozygosity (ROH) along the genome have been applied to quantify individual autozygosity to improve the understanding of inbreeding depression and identify genes associated with traits of interest. Here, we investigated the occurrence and distribution of ROH using next-generation sequencing data to characterize autozygosity in 202 Jinhua pigs, as well as to identify the genomic regions with high ROH frequencies within individuals. The average inbreeding coefficient, based on ROH longer than 1 Mb, was 0.168 ± 0.052. In total, 18,690 ROH were identified in all individuals, among which shorter segments (1-5 Mb) predominated. Individual ROH autosome coverage ranged from 5.32 to 29.14% in the Jinhua population. On average, approximately 16.8% of the whole genome was covered by ROH segments, with the lowest coverage on SSC11 and the highest coverage on SSC17. A total of 824 SNPs (about 0.5%) and 11 ROH island regions were identified (occurring in over 45% of the samples). Genes associated with reproduction (HOXA3, HOXA7, HOXA10, and HOXA11), meat quality (MYOD1, LPIN3, and CTNNBL1), appetite (NUCB2) and disease resistance traits (MUC4, MUC13, MUC20, LMLN, ITGB5, HEG1, SLC12A8, and MYLK) were identified in ROH islands. Moreover, several quantitative trait loci for ham weight and ham fat thickness were detected. Genes in ROH islands suggested, at least partially, a selection for economic traits and environmental adaptation, and should be subject of future investigation. These findings contribute to the understanding of the effects of environmental and artificial selection in shaping the distribution of functional variants in the pig genome.
Collapse
Affiliation(s)
- Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Babatunde Shittu Olasege
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiumeng Li
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yue
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qishan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
10
|
Zhang Z, Zhang Q, Xiao Q, Sun H, Gao H, Yang Y, Chen J, Li Z, Xue M, Ma P, Yang H, Xu N, Wang Q, Pan Y. Distribution of runs of homozygosity in Chinese and Western pig breeds evaluated by reduced-representation sequencing data. Anim Genet 2018; 49:579-591. [DOI: 10.1111/age.12730] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Zhe Zhang
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| | - Qianqian Zhang
- Animal Genetics, Bioinformatics and Breeding; University of Copenhagen; Frederiksberg 1870 Denmark
| | - Qian Xiao
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| | - Hao Sun
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| | - Hongding Gao
- Center for Quantitative Genetics and Genomics; Department of Molecular Biology and Genetics; Aarhus University; 8830 Tjele Denmark
| | - Yumei Yang
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| | - Jiucheng Chen
- College of Animal Sciences; Zhejiang University; Hangzhou 310058 China
| | - Zhengcao Li
- College of Animal Sciences; Zhejiang University; Hangzhou 310058 China
| | - Ming Xue
- National Station of Animal Husbandry; Beijing 100125 China
| | - Peipei Ma
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| | - Hongjie Yang
- National Station of Animal Husbandry; Beijing 100125 China
| | - Ningying Xu
- College of Animal Sciences; Zhejiang University; Hangzhou 310058 China
| | - Qishan Wang
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| | - Yuchun Pan
- Department of Animal Science; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 China
- Shanghai Key Laboratory of Veterinary Biotechnology; Shanghai 200240 China
| |
Collapse
|
11
|
Genomic analysis reveals genes affecting distinct phenotypes among different Chinese and western pig breeds. Sci Rep 2018; 8:13352. [PMID: 30190566 PMCID: PMC6127261 DOI: 10.1038/s41598-018-31802-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 01/04/2023] Open
Abstract
The differences in artificial and natural selection have been some of the factors contributing to phenotypic diversity between Chinese and western pigs. Here, 830 individuals from western and Chinese pig breeds were genotyped using the reduced-representation genotyping method. First, we identified the selection signatures for different pig breeds. By comparing Chinese pigs and western pigs along the first principal component, the growth gene IGF1R; the immune genes IL1R1, IL1RL1, DUSP10, RAC3 and SWAP70; the meat quality-related gene SNORA50 and the olfactory gene OR1F1 were identified as candidate differentiated targets. Further, along a principal component separating Pudong White pigs from others, a potential causal gene for coat colour (EDNRB) was discovered. In addition, the divergent signatures evaluated by Fst within Chinese pig breeds found genes associated with the phenotypic features of coat colour, meat quality and feed efficiency among these indigenous pigs. Second, admixture and genomic introgression analysis were performed. Shan pigs have introgressed genes from Berkshire, Yorkshire and Hongdenglong pigs. The results of introgression mapping showed that this introgression conferred adaption to the local environment and coat colour of Chinese pigs and the superior productivity of western pigs.
Collapse
|
12
|
Zhao H, Wu M, Wang S, Yu X, Li Z, Dang R, Sun X. Identification of a novel 24 bp insertion–deletion (indel) of the androgen receptor gene and its association with growth traits in four indigenous cattle breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-71-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. During the past decades, insertions and deletions (indels) have become
increasingly popular in animal breeding for understanding the relationship
between genotypes and phenotypes. The androgen receptor (AR) plays the
vital role of a bridge on the function of the androgen and has sexual size
dimorphism. For this reason, the objective of this study was to explore the
novel indel variants within the cattle AR gene and to detect their
effects on growth traits in four breeds of Chinese yellow cattle. Herein, we
first confirmed a novel 24 bp indel (AC_000187.1g.4187270-4187293delAATTTATTGGGAGATTATTGAATT) within the intron of
the cattle AR gene. This is consistent with the results predicted
from the NCBI SNP database. The distribution of the indel genotypes of four
Chinese yellow cattle were significantly different from each other
(P < 0.01). After significant correlation analysis, many remarkable
phenotypic differences among the three genotypes were found (P < 0.05).
In conclusion, a novel 24 bp indel within the AR gene
significantly affected growth traits, suggesting that this indel may be a
useful DNA marker for the elimination or selection of excellent individuals for
cattle breeding.
Collapse
|
13
|
Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome 2017; 28:528-541. [PMID: 28905131 DOI: 10.1007/s00335-017-9715-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N'Dama (West Africa-Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N'Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N'Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N'Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.
Collapse
|