1
|
Kunene LM, Muchadeyi FC, Hadebe K, Mészáros G, Sölkner J, Dugmore T, Dzomba EF. Genetics of Base Coat Colour Variations and Coat Colour-Patterns of the South African Nguni Cattle Investigated Using High-Density SNP Genotypes. Front Genet 2022; 13:832702. [PMID: 35747604 PMCID: PMC9209731 DOI: 10.3389/fgene.2022.832702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Nguni cattle are a Sanga type breed with mixed B. taurus and B. indicus ancestry and proven resistance to ticks, diseases and other harsh conditions of the African geographical landscape. The multi-coloured Nguni coats have found a niche market in the leather industry leading to breeding objectives towards the promotion of such diversity. However, there is limited studies on the genomic architecture underlying the coat colour and patterns hampering any potential breeding and improvement of such trait. This study investigated the genetics of base coat colour, colour-sidedness and the white forehead stripe in Nguni cattle using coat colour phenotyped Nguni cattle and Illumina Bovine HD (770K) genotypes. Base coat colour phenotypes were categorised into eumelanin (n = 45) and pheomelanin (n = 19). Animals were categorised into either colour-sided (n = 46) or non-colour-sided (n = 94) and similarly into presence (n = 15) or absence (n = 67) of white forehead stripe. Genome-wide association tests were conducted using 622,103 quality controlled SNPs and the Efficient Mixed Model Association eXpedited method (EMMAX) implemented in Golden Helix SNP Variation Suite. The genome-wide association studies for base coat colour (eumelanin vs. pheomelanin) resulted into four indicative SNPs on BTA18 and a well-known gene, MC1R, was observed within 1 MB from the indicative SNPs (p < 0.00001) and found to play a role in the melanogenesis (core pathway for melanin production) and the MAPK signalling pathway. GWAS for colour-sidedness resulted in four indicative SNPs, none of which were in close proximity to the KIT candidate gene known for colour-sidedness. GWAS for the white forehead stripe resulted in 17 indicative SNPs on BTA6. Four genes MAPK10, EFNA5, PPP2R3C and PAK1 were found to be associated with the white forehead stripe and were part of the MAPK, adrenergic and Wnt signalling pathways that are synergistically associated with the synthesis of melanin. Overall, our results prove prior knowledge of the role of MC1R in base coat colours in cattle and suggested a different genetic mechanism for forehead stripe phenotypes in Nguni cattle.
Collapse
Affiliation(s)
- Langelihle Mbali Kunene
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | | | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, South Africa
| | - Gábor Mészáros
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Trevor Dugmore
- KZN Department of Agriculture and Rural Development, Pietermaritzburg, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- *Correspondence: Edgar Farai Dzomba,
| |
Collapse
|
3
|
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, Shi X, Zhang M, Chen Y, Zhang L, Gao X, Gao H, Li L, Liu GE, Li J. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese Cattle. Sci Rep 2017; 7:14299. [PMID: 29085051 PMCID: PMC5662686 DOI: 10.1038/s41598-017-14768-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) are defined as deletions, insertions, and duplications between two individuals of a species. To investigate the diversity and population-genetic properties of CNVs and their diverse selection patterns, we performed a genome-wide CNV analysis using high density SNP array in Chinese native cattle. In this study, we detected a total of 13,225 CNV events and 3,356 CNV regions (CNVRs), overlapping with 1,522 annotated genes. Among them, approximately 71.43 Mb of novel CNVRs were detected in the Chinese cattle population for the first time, representing the unique genomic resources in cattle. A new V i statistic was proposed to estimate the region-specific divergence in CNVR for each group based on unbiased estimates of pairwise V ST . We obtained 12 and 62 candidate CNVRs at the top 1% and top 5% of genome-wide V i value thresholds for each of four groups (North, Northwest, Southwest and South). Moreover, we identified many lineage-differentiated CNV genes across four groups, which were associated with several important molecular functions and biological processes, including metabolic process, response to stimulus, immune system, and others. Our findings provide some insights into understanding lineage-differentiated CNVs under divergent selection in the Chinese native cattle.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinping Shi
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 20705, USA
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|