1
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Gao Y, Yang L, Yao K, Wang Y, Shao W, Yang M, Zhang X, Wei Y, Ren W. Exploration of Genes Related to Intramuscular Fat Deposition in Xinjiang Brown Cattle. Genes (Basel) 2024; 15:1121. [PMID: 39336712 PMCID: PMC11430885 DOI: 10.3390/genes15091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to investigate the differentially expressed genes associated with intramuscular fat deposition in the longissimus dorsi muscle of Xinjiang Brown Bulls. The longissimus dorsi muscles of 10 Xinjiang Brown Bulls were selected under the same feeding conditions. The intramuscular fat content of muscle samples was determined by the Soxhlet extraction method, for which 5 samples with high intramuscular fat content (HIMF group) and 5 samples with low intramuscular fat content (LIMF group) were selected. It was found that the intramuscular fat content of the HIMF group was 46.054% higher than that of the LIMF group. Muscle samples produced by paraffin sectioning were selected for morphological observation. It was found that the fat richness of the HIMF group was better than that of the LIMF group. Transcriptome sequencing technology was used to analyze the gene expression differences of longissimus dorsi muscle. Through in-depth analysis of the longissimus dorsi muscle by transcriptome sequencing technology, we screened a total of 165 differentially expressed genes. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes in the two groups were mainly clustered in biological pathways related to carbohydrate metabolic processes, redox processes and oxidoreductase activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the differentially expressed genes were significantly clustered in 15 metabolic pathways, which mainly covered fatty acid metabolism (related to lipid metabolism and glucose metabolism), the pentose phosphate pathway, the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and other important metabolic processes. The three genes that were predominantly enriched in the glycolipid metabolic pathway by analysis were SCD5, CPT1C and FBP2, all of which directly or indirectly affect intramuscular fat deposition. In summary, the present study investigated the differences in gene expression between high and low intramuscular fat content in the longissimus dorsi muscle of Xinjiang Brown Bulls by transcriptome sequencing technology and revealed the related signaling pathways. Therefore, we hypothesized that SCD5, CPT1C and FBP2 were the key genes responsible for the significant differences in intramuscular fat content of the longissimus dorsi muscles in a population of Xinjiang Brown Bulls. We expect that these findings will provide fundamental support for subsequent studies exploring key genes affecting fat deposition characteristics in Xinjiang Brown Bulls.
Collapse
Affiliation(s)
- Yu Gao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liang Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kangyu Yao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yiran Wang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Shao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Min Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xinyu Zhang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yong Wei
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wanping Ren
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
3
|
Tian R, Mahmoodi M, Tian J, Esmailizadeh Koshkoiyeh S, Zhao M, Saminzadeh M, Li H, Wang X, Li Y, Esmailizadeh A. Leveraging Functional Genomics for Understanding Beef Quality Complexities and Breeding Beef Cattle for Improved Meat Quality. Genes (Basel) 2024; 15:1104. [PMID: 39202463 PMCID: PMC11353656 DOI: 10.3390/genes15081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Consumer perception of beef is heavily influenced by overall meat quality, a critical factor in the cattle industry. Genomics has the potential to improve important beef quality traits and identify genetic markers and causal variants associated with these traits through genomic selection (GS) and genome-wide association studies (GWAS) approaches. Transcriptomics, proteomics, and metabolomics provide insights into underlying genetic mechanisms by identifying differentially expressed genes, proteins, and metabolic pathways linked to quality traits, complementing GWAS data. Leveraging these functional genomics techniques can optimize beef cattle breeding for enhanced quality traits to meet high-quality beef demand. This paper provides a comprehensive overview of the current state of applications of omics technologies in uncovering functional variants underlying beef quality complexities. By highlighting the latest findings from GWAS, GS, transcriptomics, proteomics, and metabolomics studies, this work seeks to serve as a valuable resource for fostering a deeper understanding of the complex relationships between genetics, gene expression, protein dynamics, and metabolic pathways in shaping beef quality.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Maryam Mahmoodi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Sina Esmailizadeh Koshkoiyeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Mahla Saminzadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| |
Collapse
|
4
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
5
|
Jin Z, Gao H, Fu Y, Ren R, Deng X, Chen Y, Hou X, Wang Q, Song G, Fan N, Ma H, Yin Y, Xu K. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Genes (Basel) 2024; 15:642. [PMID: 38790271 PMCID: PMC11121357 DOI: 10.3390/genes15050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.
Collapse
Affiliation(s)
- Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Ruimin Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoxiao Deng
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaohong Hou
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ningyu Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
6
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
7
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
8
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Wang B, Hou L, Yang W, Men X, Qi K, Xu Z, Wu W. Construction of a co-expression network affecting intramuscular fat content and meat color redness based on transcriptome analysis. Front Genet 2024; 15:1351429. [PMID: 38415055 PMCID: PMC10897757 DOI: 10.3389/fgene.2024.1351429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction: Intramuscular fat content (IFC) and meat color are vital indicators of pork quality. Methods: A significant positive correlation between IFC and redness of meat color (CIE a* value) indicates that these two traits are likely to be regulated by shared molecular pathways.To identify candidate genes, hub genes, and signaling pathways that regulate these two traits, we measured the IFC and CIE a* value in 147 hybrid pigs, and selected individuls with extreme phenotypes for transcriptome analysis. Results: The results revealed 485 and 394 overlapping differentially expressed genes (DEGs), using the DESeq2, limma, and edgeR packages, affecting the IFC and CIE a* value, respectively. Weighted gene co-expression network analysis (WGCNA) identified four modules significantly correlated with the IFC and CIE a* value. Moreover, we integrated functional enrichment analysis results based on DEGs, GSEA, and WGCNA conditions to identify candidate genes, and identified 47 and 53 candidate genes affecting the IFC and CIE a* value, respectively. The protein protein interaction (PPI) network analysis of candidate genes showed that 5 and 13 hub genes affect the IFC and CIE a* value, respectively. These genes mainly participate in various pathways related to lipid metabolism and redox reactions. Notably, four crucial hub genes (MYC, SOX9, CEBPB, and PPAGRC1A) were shared for these two traits. Discussion and conclusion: After functional annotation of these four hub genes, we hypothesized that the SOX9/CEBPB/PPARGC1A axis could co-regulate lipid metabolism and the myoglobin redox response. Further research on these hub genes, especially the SOX9/CEBPB/PPARGC1A axis, will help to understand the molecular mechanism of the co-regulation of the IFC and CIE a* value, which will provide a theoretical basis for improving pork quality.
Collapse
Affiliation(s)
- Binbin Wang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liming Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Keke Qi
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Hu T, Li Z, Gong C, Xiong Y, Sun S, Xing J, Li Y, Li R, Wang Y, Wang Y, Lin Y. FOS Inhibits the Differentiation of Intramuscular Adipocytes in Goats. Genes (Basel) 2023; 14:2088. [PMID: 38003034 PMCID: PMC10671551 DOI: 10.3390/genes14112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Goat intramuscular fat (IMF) deposition is precisely regulated by many key genes as well as transcription factors. Nevertheless, the potential of the regulators of goat IMF deposition remains undefined. In this work, we reported that the transcription factor FOS is expressed at a low level at the early differentiation stage and at a high level in late differentiation. The overexpression of FOS inhibited intramuscular adipocyte lipid accumulation and significantly downregulated the expressions of PPARγ, C/EBPβ, C/EBPα, AP2, SREBP1, FASN, ACC, HSL, and ATGL. Consistently, the knockdown of FOS, facilitated by two distinct siRNAs, significantly promoted intramuscular adipocyte lipid accumulation. Moreover, our analysis revealed multiple potential binding sites for FOS on the promoters of PPARγ, C/EBPβ, and C/EBPα. The expression changes in PPARγ, C/EBPβ, and C/EBPα during intramuscular adipogenesis were opposite to that of FOS. In summary, FOS inhibits intramuscular lipogenesis in goats and potentially negatively regulates the expressions of PPARγ, C/EBPβ, and C/EBPα genes. Our research will provide valuable data for the underlying molecular mechanism of the FOS regulation network of intramuscular lipogenesis.
Collapse
Affiliation(s)
- Tingting Hu
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Zhibin Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Chengsi Gong
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Shiyu Sun
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Jiani Xing
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Ruiwen Li
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Youli Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (T.H.); (Z.L.); (C.G.); (Y.X.); (S.S.); (J.X.); (Y.L.); (Y.W.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
11
|
Zhu C, Qi Y, Wang X, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. Int J Mol Sci 2023; 24:15488. [PMID: 37895167 PMCID: PMC10607073 DOI: 10.3390/ijms242015488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acetyl-CoA carboxylase beta (ACACB) is a functional candidate gene that impacts fat deposition. In the present study, we sequenced exon 37-intron 37, exon 46-intron 46, and intron 47 of yak ACACB using hybrid pool sequencing to search for variants and genotyped the gene in 593 Gannan yaks via Kompetitive allele-specific polymerase chain (KASP) reaction to determine the effect of ACACB variants on carcass and meat quality traits. Seven single nucleotide polymorphisms were detected in three regions. Eight effective haplotypes and ten diplotypes were constructed. Among them, a missense variation g.50421 A > G was identified in exon 37 of ACACB, resulting in an amino acid shift from serine to glycine. Correlation analysis revealed that this variation was associated with the cooking loss rate and yak carcass weight (p = 0.024 and 0.012, respectively). The presence of haplotypes H5 and H6 decreased Warner-Bratzler shear force (p = 0.049 and 0.006, respectively), whereas that of haplotypes H3 and H4 increased cooking loss rate and eye muscle area (p = 0.004 and 0.034, respectively). Moreover, the presence of haplotype H8 decreased the drip loss rate (p = 0.019). The presence of one and two copies of haplotypes H1 and H8 decreased the drip loss rate (p = 0.028 and 0.004, respectively). However, haplotype H1 did not decrease hot carcass weight (p = 0.011), whereas H3 increased the cooking loss rate (p = 0.007). The presence of one and two copies of haplotype H6 decreased Warner-Bratzler shear force (p = 0.014). The findings of the present study suggest that genetic variations in ACACB can be a preferable biomarker for improving yak meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| |
Collapse
|
12
|
Pedro AE, Torrecilhas JA, Torres RNS, Ramírez-Zamudio GD, Baldassini WA, Chardulo LAL, Curi RA, Russo GH, Napolitano JA, Bezerra Tinoco GL, Mariano TB, Caixeta JL, Moriel P, Pereira GL. Early Weaning Possibly Increases the Activity of Lipogenic and Adipogenic Pathways in Intramuscular Adipose Tissue of Nellore Calves. Metabolites 2023; 13:1028. [PMID: 37755308 PMCID: PMC10536964 DOI: 10.3390/metabo13091028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to evaluate by wide-expression profile analysis how early weaning at 120 days can alter the skeletal muscle metabolism of calves supplemented with a concentrated diet until the growth phase. Longissimus thoracis muscle samples were obtained by biopsy from two groups of calves, early weaned (EW; n = 8) and conventionally weaned (CW; n = 8) at two different times (120 days of age-T1 [EW] and 205 days of age-T2 [CW]). Next, differential gene expression analysis and functional enrichment of metabolic pathways and biological processes were performed. The results showed respectively 658 and 165 differentially expressed genes when T1 and T2 were contrasted in the early weaning group and when early and conventionally weaned groups were compared at T2. The FABP4, SCD1, FASN, LDLR, ADIPOQ, ACACA, PPARD, and ACOX3 genes were prospected in both comparisons described above. Given the key role of these differentially expressed genes in lipid and fatty acid metabolism, the results demonstrate the effect of diet on the modulation of energy metabolism, particularly favoring postnatal adipogenesis and lipogenesis, as well as a consequent trend in obtaining better quality cuts, as long as an environment for the maintenance of these alterations until adulthood is provided.
Collapse
Affiliation(s)
- Ariane Enara Pedro
- College of Agronomics and Veterinary Sciences, University of São Paulo State Júlio de Mesquita Filho, Jaboticabal 14884-900, Brazil; (A.E.P.); (G.H.R.); (G.L.B.T.)
| | - Juliana Akamine Torrecilhas
- College of Veterinary and nimal Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18618-687, Brazil; (J.A.T.); (R.N.S.T.); (W.A.B.); (L.A.L.C.); (R.A.C.)
| | - Rodrigo Nazaré Santos Torres
- College of Veterinary and nimal Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18618-687, Brazil; (J.A.T.); (R.N.S.T.); (W.A.B.); (L.A.L.C.); (R.A.C.)
| | | | - Welder Angelo Baldassini
- College of Veterinary and nimal Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18618-687, Brazil; (J.A.T.); (R.N.S.T.); (W.A.B.); (L.A.L.C.); (R.A.C.)
| | - Luis Artur Loyola Chardulo
- College of Veterinary and nimal Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18618-687, Brazil; (J.A.T.); (R.N.S.T.); (W.A.B.); (L.A.L.C.); (R.A.C.)
| | - Rogério Abdallah Curi
- College of Veterinary and nimal Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18618-687, Brazil; (J.A.T.); (R.N.S.T.); (W.A.B.); (L.A.L.C.); (R.A.C.)
| | - Gustavo Henrique Russo
- College of Agronomics and Veterinary Sciences, University of São Paulo State Júlio de Mesquita Filho, Jaboticabal 14884-900, Brazil; (A.E.P.); (G.H.R.); (G.L.B.T.)
| | - Juliane Arielly Napolitano
- College of Agronomic Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18610-034, Brazil; (J.A.N.); (T.B.M.); (J.L.C.)
| | - Gustavo Lucas Bezerra Tinoco
- College of Agronomics and Veterinary Sciences, University of São Paulo State Júlio de Mesquita Filho, Jaboticabal 14884-900, Brazil; (A.E.P.); (G.H.R.); (G.L.B.T.)
| | - Thiago Barcaça Mariano
- College of Agronomic Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18610-034, Brazil; (J.A.N.); (T.B.M.); (J.L.C.)
| | - Jordana Luiza Caixeta
- College of Agronomic Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18610-034, Brazil; (J.A.N.); (T.B.M.); (J.L.C.)
| | - Philipe Moriel
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA;
| | - Guilherme Luis Pereira
- College of Agronomics and Veterinary Sciences, University of São Paulo State Júlio de Mesquita Filho, Jaboticabal 14884-900, Brazil; (A.E.P.); (G.H.R.); (G.L.B.T.)
- College of Veterinary and nimal Science, University of São Paulo State Júlio de Mesquita Filho, Botucatu 18618-687, Brazil; (J.A.T.); (R.N.S.T.); (W.A.B.); (L.A.L.C.); (R.A.C.)
| |
Collapse
|
13
|
Shah AM, Bano I, Qazi IH, Matra M, Wanapat M. "The Yak"-A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front Vet Sci 2023; 10:1086985. [PMID: 36814466 PMCID: PMC9940766 DOI: 10.3389/fvets.2023.1086985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.
Collapse
Affiliation(s)
- Ali Mujtaba Shah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,*Correspondence: Metha Wanapat ✉
| |
Collapse
|
14
|
He Z, Wang X, Qi Y, Zhu C, Zhao Z, Zhang X, Liu X, Li S, Zhao F, Wang J, Shi B, Hu J. Long-stranded non-coding RNAs temporal-specific expression profiles reveal longissimus dorsi muscle development and intramuscular fat deposition in Tianzhu white yak. J Anim Sci 2023; 101:skad394. [PMID: 38029315 PMCID: PMC10760506 DOI: 10.1093/jas/skad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
The process of muscle development and intramuscular fat (IMF) deposition is quite complex and controlled by both mRNAs and ncRNAs. Long-stranded non-coding RNAs (LncRNAs) are involved in various biological processes in mammals while also playing a critical role in muscle development and fat deposition. In the present study, RNA-Seq was used to comprehensively study the expression of lncRNAs and mRNAs during muscle development and intramuscular fat deposition in postnatal Tianzhu white yaks at three stages, including 6 mo of age (calve, n = 6), 30 mo of age (young cattle, n = 6) and 54 mo of age (adult cattle, n = 6). The results indicated that a total of 2,101 lncRNAs and 20,855 mRNAs were screened across the three stages, of which the numbers of differential expression (DE) lncRNAs and DE mRNAs were 289 and 1,339, respectively, and DE lncRNAs were divided into eight different expression patterns based on expression trends. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that some DE mRNAs overlapped with target genes of lncRNAs, such as NEDD4L, SCN3B, AGT, HDAC4, DES, MYH14, KLF15 (muscle development), ACACB, PCK2, LIPE, PIK3R1, PNPLA2, and MGLL (intramuscular fat deposition). These DE mRNAs were significantly enriched in critical muscle development and IMF deposition-related pathways and GO terms, such as AMPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway, etc. In addition, lncRNA-mRNA co-expression network analysis revealed that six lncRNAs (MSTRG.20152.2, MSTRG.20152.3, XR_001351700.1, MSTRG.8190.1, MSTRG.4827.1, and MSTRG.11486.1) may play a major role in Tianzhu white yak muscle development and lipidosis deposition. Therefore, this study enriches the database of yak lncRNAs and could help to further explore the functions and roles of lncRNAs in different stages of muscle development and intramuscular fat deposition in the Tianzhu white yak.
Collapse
Affiliation(s)
- Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
de Araújo TLAC, Feijó GLD, Neves AP, Nogueira É, de Oliveira LOF, Gomes MDNB, do Egito AA, Ferraz ALJ, Menezes GRDO, Latta KI, Ferreira JR, Vieira DG, Pereira ES, Gomes RDC. Effect of genetic merit for backfat thickness and paternal breed on performance, carcass traits, and gene expression in subcutaneous adipose tissue of feedlot-finished steers. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Reassessment of adipocyte technology for cellular agriculture of alternative fat. Compr Rev Food Sci Food Saf 2022; 21:4146-4163. [PMID: 36018497 DOI: 10.1111/1541-4337.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Alternative proteins, such as cultivated meat, have recently attracted significant attention as novel and sustainable food. Fat tissue/cell is an important component of meat that makes organoleptic and nutritional contributions. Although adipocyte biology is relatively well investigated, there is limited focus on the specific techniques and strategies to produce cultivated fat from agricultural animals. In the assumed standard workflow, stem/progenitor cell lines are derived from tissues of animals, cultured for expansion, and differentiated into mature adipocytes. Here, we compile information from literature related to cell isolation, growth, differentiation, and analysis from bovine, porcine, chicken, other livestock, and seafood species. A diverse range of tissue sources, cell isolation methods, cell types, growth media, differentiation cocktails, and analytical methods for measuring adipogenic levels were used across species. Based on our analysis, we identify opportunities and challenges in advancing new technology era toward producing "alternative fat" that is suitable for human consumption.
Collapse
Affiliation(s)
- Shigeki Sugii
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore.,Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Cheryl Yeh Qi Wong
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Angela Khin Oo Lwin
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Lamony Jian Ming Chew
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| |
Collapse
|
17
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
18
|
Narayan E, Sawyer G, Fox D, Smith R, Tilbrook A. Interplay Between Stress and Reproduction: Novel Epigenetic Markers in Response to Shearing Patterns in Australian Merino Sheep (Ovis aries). Front Vet Sci 2022; 9:830450. [PMID: 35464367 PMCID: PMC9021797 DOI: 10.3389/fvets.2022.830450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, we determined the effect(s) of early shearing on Australian Merino ewes (Ovis aries) and their lambs. To test this research question, we used a suite of field and laboratory methods including GPS collars, wool cortisol, and epigenetic change between ewes and lambs identified using Illumina NovaSeq RRBS. Once shorn ewes (n = 24) were kept on their full fleece throughout the entire gestation period, whereas twice (early) shorn ewes (n = 24) had their wool shorn pre-joining. Top-knot wool sample was taken from ewes during pre-joining, day 50 (mid-gestation), and day 90 (late gestation) for laboratory analysis. Ewes were pregnancy scanned at mid-gestation to determine whether they were early or late parturition (this confirmation is provided by the pregnancy scanner based on fetus size). Top-knot wool sample was also taken from the lambs at weaning for hormone and wool quality testing. Ear tissue was taken from ewes at day 50 (mid-gestation) and from lambs at lamb marking for DNA analysis. Results showed that twice or early shorn ewes grazed 10% higher and maintained stronger body condition than once shorn ewes. Wool cortisol levels were also significantly lower in the early shorn ewes between mid- and late gestation. Lambs bred from twice shorn ewes had on average better visual wool quality parameters in terms of micron, spin finesses, and curvature. For the DNA methylation results, when comparing a group of once sheared with twice sheared ewes, we have discovered one locus (Chr20:50404014) that was significantly differentially methylated [False Discovery Rate (FDR) = 0.005]. This locus is upstream of a protein-coding gene (ENSOARG00000002778.1), which shows similarities to the forkhead box C1 (FOXC1) mRNA using BLAST searches. To further our understanding of the potential interaction between pregnancy status and shearing frequency of the ewes, we performed further differential methylation analysis using a combination of shearing treatment and pregnancy scanning status. The comparisons (1) late pregnancy vs. early pregnancy for ewes with one shearing treatment and (2) late pregnancy vs. early pregnancy for sheep with two shearing treatments were carried out to identify associations between loci and pregnancy duration for sheep with either one or two shearing events. We discovered that 36 gene loci were significantly modulated either between different shearing treatments or late vs. early pregnancy status of ewes. This result suggests that maternal pregnancy and nutritional status during gestation influence DNA methylation. We further investigated DNA methylation in lambs and identified 16 annotated gene loci that showed epigenetic modulation as a result of being born from an early or late stage pregnancy. From the genomics data, we pointed out that ewes go through epigenetic modifications during gestation, and there is a degree of intra-individual variation in the reproductive performance of ewes, which could be due to combination of intrinsic (genetic and physiological) and extrinsic (management and climatic) factors. Collectively, this research provides novel dataset combining physiological, molecular epigenetics, and digital tracking indices that advances our understanding of how Merino ewes respond to shearing frequency, and this information could guide further research on Merino sheep breeding and welfare.
Collapse
Affiliation(s)
- Edward Narayan
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St.Lucia, QLD, Australia
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St.Lucia, QLD, Australia
- *Correspondence: Edward Narayan
| | - Gregory Sawyer
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Dylan Fox
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St.Lucia, QLD, Australia
| | - Ryan Smith
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St.Lucia, QLD, Australia
- School of Veterinary Science, Faculty of Science, The University of Queensland, St.Lucia, QLD, Australia
| |
Collapse
|
19
|
Li B, He Y, Wu W, Tan X, Wang Z, Irwin DM, Wang Z, Zhang S. Circular RNA Profiling Identifies Novel circPPARA that Promotes Intramuscular Fat Deposition in Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4123-4137. [PMID: 35324170 DOI: 10.1021/acs.jafc.1c07358] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intramuscular fat (IMF) content plays an important role in pork quality. Circular RNAs (circRNAs) implicate various biological processes; however, the regulatory mechanisms and functions of circRNAs in porcine IMF remains elusive. Hence, the study assessed the circRNA expression profiling in the longissimus dorsi muscle of pigs with high (H) and low (L) IMF content to unravel their regulatory functions in improving meat quality. The RNA sequencing analysis identified 29,732 circRNAs from six sampled pigs, most of which were exon-derived. In the muscle, 336 were differentially expressed (DE) between the H and L IMF groups; 196 circRNAs were upregulated, and 140 were downregulated. Subsequent qRT-PCR validation of 10 DE circRNAs revealed expression patterns consistent with the RNA-seq data. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to lipid metabolism and adipogenesis processes. The circRNA-miRNA regulatory network analysis found several circRNAs targeting miRNAs associated with adipogenesis. Finally, a novel circRNA, circPPARA, was identified with the expression positively correlated with the IMF content. Detailed analysis revealed that circPPARA was formed via head-to-tail splicing and was more stable than the linear PPARA, predominantly located in the cytoplasm. Functional studies using overexpression and siRNA constructs demonstrated that circPPARA promotes differentiation and hinders the proliferation of porcine intramuscular preadipocytes. Moreover, the dual-luciferase assay revealed that circPPARA adsorbed miR-429 and miR-200b, thereby promoting intramuscular adipogenesis in pigs. Our results identified a candidate circRNA, circPPARA, that affects porcine IMF content. The study provides knowledge of the regulatory functions of circRNAs in intramuscular adipogenesis and abundant resource for future research on circRNAs in pigs.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zichenhan Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
20
|
Chen H, Peng T, Shang H, Shang X, Zhao X, Qu M, Song X. RNA-Seq Analysis Reveals the Potential Molecular Mechanisms of Puerarin on Intramuscular Fat Deposition in Heat-Stressed Beef Cattle. Front Nutr 2022; 9:817557. [PMID: 35387191 PMCID: PMC8978796 DOI: 10.3389/fnut.2022.817557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of Puerarin on intramuscular fat deposition in heat-stressed beef cattle and its underlying mechanism. Thirty-two healthy Jinjiang bulls were randomly divided into four groups and dietary with 0 (Control), 200 (Pue200), 400 (Pue400), and 800 (Pue800) mg/kg Puerarin in the feed concentrate. The results showed that Puerarin treatment enhanced the concentration of crude fat, fatty acid (C14:1 and C17:1), and the activity of fatty acid synthase in Longissimus thoracis (LT), but decreased the levels of blood leptin (P < 0.05). High-throughput sequencing of mRNA technology (RNA-Seq) was used and the analysis showed that 492 genes were down-regulated and 341 genes were up-regulated in LT, and these genes were significantly enriched to the pathways related to lipid metabolism. These results indicated that dietary supplemental with Puerarin enhanced intramuscular fat deposition by regulating lipid metabolism of heat-stressed beef cattle.
Collapse
|
21
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
22
|
Yanza YR, Szumacher-Strabel M, Lechniak D, Ślusarczyk S, Kolodziejski P, Patra AK, Váradyová Z, Lisiak D, Vazirigohar M, Cieslak A. Dietary Coleus amboinicus Lour. decreases ruminal methanogenesis and biohydrogenation, and improves meat quality and fatty acid composition in longissimus thoracis muscle of lambs. J Anim Sci Biotechnol 2022; 13:5. [PMID: 35027089 PMCID: PMC8765733 DOI: 10.1186/s40104-021-00654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Methane production and fatty acids (FA) biohydrogenation in the rumen are two main constraints in ruminant production causing environmental burden and reducing food product quality. Rumen functions can be modulated by the biologically active compounds (BACs) of plant origins as shown in several studies e.g. reduction in methane emission, modulation of FA composition with positive impact on the ruminant products. Coleus amboinicus Lour. (CAL) contains high concentration of polyphenols that may potentially reduce methane production and modulate ruminal biohydrogenation of unsaturated FA. This study aimed to investigate the effect of BAC of Coleus amboinicus Lour. (CAL) fed to growing lambs on ruminal methane production, biohydrogenation of unsaturated FA and meat characteristics. In this study, the in vitro experiment aiming at determining the most effective CAL dose for in vivo experiments was followed by two in vivo experiments in rumen-cannulated rams and growing lambs. Experiment 1 (RUSITEC) comprised of control and three experimental diets differing in CAL content (10%, 15%, and 20% of the total diet). The two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Exp. 2) and 16 growing lambs (Exp. 3). Animals were assigned into the control (CON) and experimental (20% of CAL) groups. Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results CAL lowered in vitro methane production by 51%. In the in vivo Exp. 3, CAL decreased methane production by 20% compared with the CON group, which corresponded to reduction of total methanogen counts by up to 28% in all experiments, notably Methanobacteriales. In Exp. 3, CAL increased or tended to increase populations of some rumen bacteria (Ruminococcus albus, Megasphaera elsdenii, Butyrivibrio proteoclasticus, and Butyrivibrio fibrisolvens). Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in vivo. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. CAL reduced the mRNA expression of four out of five genes investigated in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions Summarizing, polyphenols of CAL origin (20% in diet) mitigated ruminal methane production by inhibiting the methanogen communities. CAL supplementation also improved ruminal environment by modulating ruminal bacteria involved in fermentation and biohydrogenation of FA. Besides, CAL elevated the LNA concentration, which improved meat quality through increased deposition of n-3 PUFA. • Coleus amboinicus Lour. (CAL) into sheep diet decreased CH4 emission. • CAL did not reduce nutrient digestibility, but inhibited the methanogen community. • CAL increased ruminal propionate proportion and decreased acetate/propionate ratio. • CAL elevated n-3 fatty acid concentration in ruminal fluid and meat. • Supplementation of CAL improved some meat quality traits.
Collapse
Affiliation(s)
- Yulianri Rizki Yanza
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, 60-637, Poznań, Poland.,Department of Biology Education, Universitas Islam Riau, Jl. Kaharuddin Nasution 113, Pekanbaru, 28284, Indonesia
| | - Malgorzata Szumacher-Strabel
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, 60-637, Poznań, Poland
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botany, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Pawel Kolodziejski
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, 60-637, Poznań, Poland
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, K.B. Sarani 37, Kolkata, 700037, India
| | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Dariusz Lisiak
- Department of Meat and Fat Technology, Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warszawa, Poland
| | - Mina Vazirigohar
- Zist Dam Group, University Incubator Center, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Adam Cieslak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
23
|
Xiao C, Wei T, Liu LX, Liu JQ, Wang CX, Yuan ZY, Ma HH, Jin HG, Zhang LC, Cao Y. Whole-Transcriptome Analysis of Preadipocyte and Adipocyte and Construction of Regulatory Networks to Investigate Lipid Metabolism in Sheep. Front Genet 2021; 12:662143. [PMID: 34394181 PMCID: PMC8358208 DOI: 10.3389/fgene.2021.662143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/09/2021] [Indexed: 01/20/2023] Open
Abstract
Many local sheep breeds in China have poor meat quality. Increasing intramuscular fat (IMF) content can significantly improve the quality of mutton. However, the molecular mechanisms of intramuscular adipocyte formation and differentiation remain unclear. This study compared differences between preadipocytes and mature adipocytes by whole-transcriptome sequencing and constructed systematically regulatory networks according to the relationship predicted among the differentially expressed RNAs (DERs). Sequencing results showed that in this process, there were 1,196, 754, 100, and 17 differentially expressed messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), respectively. Gene Ontology analysis showed that most DERs enriched in Cell Part, Cellular Process, Biological Regulation, and Binding terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DERs primarily focused on Focal adhesion, phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor (PPAR) signaling pathways. Forty (40) DERs were randomly selected from the core regulatory network to verify the accuracy of the sequence data. The results of qPCR showed that the DER expression trend was consistent with sequence data. Four novel promising candidate miRNAs (miR-336, miR-422, miR-578, and miR-722) played crucial roles in adipocyte differentiation, and they also participated in multiple and important regulatory networks. We verified the expression pattern of the miRNAs and related pathways’ members at five time points in the adipocyte differentiation process (0, 2, 4, 6, 8, 10 days) by qPCR, including miR-336/ACSL4/LncRNA-MSTRG71379/circRNA0002331, miR-422/FOXO4/LncRNA-MSTRG54995/circRNA0000520, miR-578/IGF1/LncRNA-MSTRG102235/circRNA0002971, and miR-722/PDK4/LncRNA-MSTRG107440/circ RNA0002909. In this study, our data provided plenty of valuable candidate DERs and regulatory networks for researching the molecular mechanisms of sheep adipocyte differentiation and will assist studies in improving the IMF.
Collapse
Affiliation(s)
- Cheng Xiao
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Tian Wei
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Li Xiang Liu
- Jilin Academy of Agricultural Sciences, Gongzhuling, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jian Qiang Liu
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chun Xin Wang
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhi Yu Yuan
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Hui Hai Ma
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Hai Guo Jin
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Li Chun Zhang
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
24
|
Xiong L, Pei J, Chu M, Wu X, Kalwar Q, Yan P, Guo X. Fat Deposition in the Muscle of Female and Male Yak and the Correlation of Yak Meat Quality with Fat. Animals (Basel) 2021; 11:ani11072142. [PMID: 34359275 PMCID: PMC8300776 DOI: 10.3390/ani11072142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the differences in fat deposition between female (FYs) and male yaks (MYs). Compared with MYs, the tenderness, L*, marbling, absolute content of fat, and most fatty acids (FAs) of longissimus dorsi (LD) in FYs were higher or better (p < 0.05), whereas the relative content of polyunsaturated fatty acids (PUFAs) and n-3 PUFAs were lower (p < 0.01). The absolute content of fat, C18:0, cis-C18:2, cis-C18:1, and C24:0 were positively correlated with L*45 min, b*24 h, tenderness, and marbling score of LD in FYs and MYs (p < 0.05), respectively. LPL, FATP2, ELOVL6, HADH, HACD, and PLINS genes play a crucial role in improving the marbling score and tenderness of yak meat. The results of gene expression and protein synthesis showed the effect of gender to FA biosynthesis, FA transport, lipolysis, and FA oxidation in the adipose tissue of yak was realized by the expressions of ME1, SCD, ACSL5, LPL, FABP1, PLIN4, and PLIN2 in peroxisome proliferators-activated receptor (PPAR) signaling. This study established a theoretical basis for the improvement of the meat quality of yak and molecular breeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan;
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| |
Collapse
|
25
|
Pan C, Lei Z, Wang S, Wang X, Wei D, Cai X, Luoreng Z, Wang L, Ma Y. Genome-wide identification of cyclin-dependent kinase (CDK) genes affecting adipocyte differentiation in cattle. BMC Genomics 2021; 22:532. [PMID: 34253191 PMCID: PMC8276410 DOI: 10.1186/s12864-021-07653-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. RESULTS We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. CONCLUSION In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.
Collapse
Affiliation(s)
- Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Zhaoxiong Lei
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Cai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China.
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.
| |
Collapse
|
26
|
Liu J, Wang L, Chen W, Li J, Shan T. CRTC3 Regulates the Lipid Metabolism and Adipogenic Differentiation of Porcine Intramuscular and Subcutaneous Adipocytes by Activating the Calcium Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7243-7255. [PMID: 34142819 DOI: 10.1021/acs.jafc.1c02021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fat deposition, especially the intramuscular (IM) fat deposition, is directly associated with meat quality. The cyclic adenosine monophosphate (cAMP)-responsive element binding-protein (CREB)-regulated transcription coactivator 3 (CRTC3) plays an important role in energy metabolism and various biological processes. The expression of porcine CRTC3 in skeletal muscle is positively associated with intramuscular fat deposition and possesses the capacity to control the intramuscular (IM) adipocyte morphology. However, the metabolic effects and transcriptional mechanism of CRTC3 in porcine intramuscular (IM) adipocytes as well as the regulatory mechanism of CRTC3 on porcine adipocyte differentiation have not been studied. Here, we utilized metabolomics and RNA sequencing (RNA-seq) to determine the metabolic and transcriptome profiles of CRTC3-overexpressing IM adipocytes. Moreover, the effect and regulation mechanism of CRTC3 on porcine IM and subcutaneous (SC) adipocyte differentiation were also studied. Our results showed that CRTC3 overexpression dramatically altered the metabolites in IM adipocytes. Glycerophospholipid (GP) metabolism and related genes were significantly changed in CRTC3-overexpressing IM adipocytes. Moreover, we demonstrated that CRTC3 overexpression promotes adipogenic differentiation by upregulating the Ca2+-cAMP signaling pathway in IM and SC adipocytes. We showed alterations in metabolites and in the expression of genes involved in lipid metabolism in CRTC3-overexpressing adipocytes and demonstrated the regulatory mechanism of CRTC3 on the adipogenic differentiation of porcine adipocytes. These results provide new insights into the regulatory roles of CRTC3 in porcine adipocytes, which could be an important target to regulate fat deposition in animals.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| |
Collapse
|