1
|
Ullah S, Alouffi A, Khan M, Khan M, Tila H, Tanaka T, da Silva Vaz I, Almutairi MM, Ali A. Molecular detection of Rickettsia aeschlimannii, Candidatus Rickettsia shennongii, Rickettsia sp. and Coxiella burnetii in ticks collected from camels. Sci Rep 2024; 14:22129. [PMID: 39333333 PMCID: PMC11436945 DOI: 10.1038/s41598-024-73663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Tick-borne bacteria of the genera Rickettsia and Coxiella cause several emerging veterinary and human infectious diseases. Ticks of the genus Hyalomma are medically important vectors due to their potential role in the transmission of pathogens to vertebrate hosts. There is an inadequate knowledge on tick-borne Rickettsia spp. and Coxiella spp. in ticks infesting transhumant camels in Pakistan. In this study, we conducted a molecular survey for screening of Rickettsia spp. and Coxiella spp. in ticks infesting camels. Seven hard tick species including Hyalomma dromedarii, Hyalomma anatolicum, Hyalomma scupense, Hyalomma isaaci, Hyalomma turanicum, Hyalomma asiaticum, and Rhipicephalus sanguineus s.l were confirmed on camels in three distinct physiographic regions of Khyber Pakhtunkhwa, Pakistan. A subset of morphologically identified ticks were subjected to molecular assays for the genetic characterization of ticks and the detection and genetic characterization of Rickettsia and Coxiella species using standard genetic markers. Ticks screened for pathogens resulted in the detection of Rickettsia aeschlimannii and Candidatus Rickettsia shennongii and Coxiella burnetii. The molecular analysis further reveals the presences of an undetermined Rickettsia aeschlimannii-like species, that is making a distinct phylogenetic clade with R. aeschlimannii. The detection of pathogens in camel ticks poses potential health hazards as these ticks frequently bites humans. Molecular screening of Rickettsia spp. and Coxiella spp. associated with camel ticks is a preliminary step toward the surveillance of evaluating their zoonotic threats in the region.
Collapse
Affiliation(s)
- Shafi Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, Porto Alegre, 9500, 91501-970, RS, Brazil
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Majid Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hadia Tila
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Laboratory of Animal Microbiology, Graduate School of Agricultural Science/Faculty of Agriculture, Tohoku University, Sendai, 980-8572, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, Porto Alegre, 9500, 91501-970, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, Porto Alegre, 9090, 91540-000, RS, Brazil
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
2
|
Guo S, Yu T, Wang X, Zhao S, Zhao E, Ainierlitu, Ba T, Gan M, Dong C, Naerlima, Yin L, Ke X, Dana D, Guo X. Whole-genome resequencing reveals the uniqueness of Subei yak. J Anim Sci 2024; 102:skae152. [PMID: 38832496 PMCID: PMC11217902 DOI: 10.1093/jas/skae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024] Open
Abstract
Subei yak is an essential local yak in the Gansu Province, which genetic resource has recently been discovered. It is a meat-milk dual-purpose variety with high fecundity and relatively stable population genetic structure. However, its population genetic structure and genetic diversity are yet to be reported. Therefore, this study aimed to identify molecular markers of Subei yak genome by whole-genome resequencing, and to analyze the population structure and genetic diversity of Subei yak. This study screened 12,079,496 single nucleotide polymorphism (SNP) molecular markers in the 20 Subei yaks genome using whole-genome resequencing technology. Of these SNPs, 32.09% were located in the intronic region of the genome. Principal component analysis, phylogenetic analysis, and population structure analysis revealed that the Subei yak belonged to an independent group in the domestic yak population. A selective clearance analysis was carried out on Subei yak and other domestic yaks, and the genes under positive selection were annotated. The functional enrichment analysis showed that Subei yak possessed prominent selection characteristics in terms of external environment perception, hypoxia adaptation, and muscle development. Furthermore, Subei yak showed excellent muscle fat deposition and meat quality traits. Thus, this study will serve as a reference for discovering population structure, genetic evolution, and other unique traits of Subei yak and for expanding the genetic variation catalog of yaks.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Tianjun Yu
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Shuangquan Zhao
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Erjun Zhao
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Ainierlitu
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Teer Ba
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Manyu Gan
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Cunmei Dong
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Naerlima
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Lian Yin
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xikou Ke
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Dawuti Dana
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| |
Collapse
|
3
|
Amandykova M, Dossybayev K, Mussayeva A, Saitou N, Zhunusbayeva Z, Bekmanov B. A Study of the Genetic Structure of Hybrid Camels in Kazakhstan. Genes (Basel) 2023; 14:1373. [PMID: 37510278 PMCID: PMC10379372 DOI: 10.3390/genes14071373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Camel farming is gaining scientific interest due to its unique agricultural characteristics. Camels are versatile for milk and meat production, wool, racing, transport, and tourism. To use their full potential, it is essential to improve our understanding of the genetic structure of these animals. One-humped and two-humped camels have received detailed genetic descriptions, while there is no such information for their hybrids, which outperform their parent species in several agricultural characteristics. Thus, in this study, for the first time, the whole genome sequencing data (WGS) of five hybrid camels bred in the Almaty region of Kazakhstan are presented in comparison with the WGS data of one-humped, two-humped, and wild camels. A total of 43,552,164 single-nucleotide polymorphisms were found across the studied groups. Further comparison of these SNPs showed the following number of private SNPs among the populations: hybrid camels (3,271,083), wild camels (2,515,591), Bactrians (1,244,694), and dromedaries (531,224). The genetic structure of the studied animals was described, and a phylogenetic tree was built to assess their genetic distance. It was found that the studied hybrids are genetically closer to dromedaries since they were on the close branch of the phylogenetic tree.
Collapse
Affiliation(s)
- Makpal Amandykova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Laboratory of Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan
| | - Kairat Dossybayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Laboratory of Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan
| | - Aizhan Mussayeva
- Laboratory of Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan
| | - Naruya Saitou
- Saitou Naruya Laboratory, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| | - Zhazira Zhunusbayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Bakytzhan Bekmanov
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Laboratory of Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan
| |
Collapse
|