1
|
Li Q, Homilius M, Achilles E, Massey LK, Convey V, Ohlsson Å, Ljungvall I, Häggström J, Boler BV, Steiner P, Day S, MacRae CA, Oyama MA. Metabolic abnormalities and reprogramming in cats with naturally occurring hypertrophic cardiomyopathy. ESC Heart Fail 2024. [PMID: 39499136 DOI: 10.1002/ehf2.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND AIMS The heart is a metabolic organ rich in mitochondria. The failing heart reprograms to utilize different energy substrates, which increase its oxygen consumption. These adaptive changes contribute to increased oxidative stress. Hypertrophic cardiomyopathy (HCM) is a common heart condition, affecting approximately 15% of the general cat population. Feline HCM shares phenotypical and genotypical similarities with human HCM, but the disease mechanisms for both species are incompletely understood. Our goal was to characterize global changes in metabolome between healthy control cats and cats with different stages of HCM. METHODS Serum samples from 83 cats, the majority (70/83) of which were domestic shorthair and included 23 healthy control cats, 31 and 12 preclinical cats with American College of Veterinary Internal Medicine (ACVIM) stages B1 and B2, respectively, and 17 cats with history of clinical heart failure or arterial thromboembolism (ACVIM stage C), were collected for untargeted metabolomic analysis. Multiple linear regression adjusted for age, sex and body weight was applied to compare between control and across HCM groups. RESULTS Our study identified 1253 metabolites, of which 983 metabolites had known identities. Statistical analysis identified 167 metabolites that were significantly different among groups (adjusted P < 0.1). About half of the differentially identified metabolites were lipids, including glycerophospholipids, sphingolipids and cholesterol. Serum concentrations of free fatty acids, 3-hydroxy fatty acids and acylcarnitines were increased in HCM groups compared with control group. The levels of creatine phosphate and multiple Krebs cycle intermediates, including succinate, aconitate and α-ketoglutarate, also accumulated in the circulation of HCM cats. In addition, serum levels of nicotinamide and tryptophan, precursors for de novo NAD+ biosynthesis, were reduced in HCM groups versus control group. Glutathione metabolism was altered. Serum levels of cystine, the oxidized form of cysteine and cysteine-glutathione disulfide, were elevated in the HCM groups, indicative of heightened oxidative stress. Further, the level of ophthalmate, an endogenous glutathione analog and competitive inhibitor, was increased by more than twofold in HCM groups versus control group. Finally, several uremic toxins, including guanidino compounds and protein bound putrescine, accumulated in the circulation of HCM cats. CONCLUSIONS Our study provided evidence of deranged energy metabolism, altered glutathione homeostasis and impaired renal uremic toxin excretion. Altered lipid metabolism suggested perturbed structure and function of cardiac sarcolemma membrane and lipid signalling.
Collapse
Affiliation(s)
- Qinghong Li
- Nestlé Purina Research, St. Louis, Missouri, USA
| | - Max Homilius
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Achilles
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura K Massey
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria Convey
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Åsa Ohlsson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Sharlene Day
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Calum A MacRae
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Boeykens F, Abitbol M, Anderson H, Dargar T, Ferrari P, Fox PR, Hayward JJ, Häggström J, Davison S, Kittleson MD, van Steenbeek F, Ljungvall I, Lyons LA, Longeri M, Ohlsson Å, Peelman L, Dufaure de Citres C, Smets P, Turba ME, Broeckx BJG. Classification of feline hypertrophic cardiomyopathy-associated gene variants according to the American College of Medical Genetics and Genomics guidelines. Front Vet Sci 2024; 11:1327081. [PMID: 38371598 PMCID: PMC10873919 DOI: 10.3389/fvets.2024.1327081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction The correct labeling of a genetic variant as pathogenic is important as breeding decisions based on incorrect DNA tests can lead to the unwarranted exclusion of animals, potentially compromising the long-term health of a population. In human medicine, the American college of Medical Genetics (ACMG) guidelines provide a framework for variant classification. This study aims to apply these guidelines to six genetic variants associated with hypertrophic cardiomyopathy (HCM) in certain cat breeds and to propose a modified criterion for variant classification. Methods Genetic samples were sourced from five cat breeds: Maine Coon, Sphynx, Ragdoll, Devon Rex, and British Short- and Longhair. Allele frequencies were determined, and in the subset with phenotypes available, odds ratios to determine the association with HCM were calculated. In silico evaluation followed with joint evidence and data from other publications assisting in the classification of each variant. Results Two variants, MYBPC3:c.91G > C [A31P] and MYBPC3:c.2453C > T [R818W], were designated as pathogenic. One variant, MYH7:c.5647G > A [E1883K], was found likely pathogenic, while the remaining three were labeled as variants of unknown significance. Discussion Routine genetic testing is advised solely for the MYBPC3:c.91G > C [A31P] in the Maine Coon and MYBPC3:c.2453C > T [R818W] in the Ragdoll breed. The human ACMG guidelines serve as a suitable foundational tool to ascertain which variants to include; however, refining them for application in veterinary medicine might be beneficial.
Collapse
Affiliation(s)
- Fréderique Boeykens
- Laboratory Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marie Abitbol
- Univ Lyon, VetAgro Sup, Marcy-l’Etoile, France & Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médicine, Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Heidi Anderson
- Wisdom Panel, Mars Petcare Science & Diagnostics, Helsinki, Finland
| | - Tanushri Dargar
- Univ Lyon, VetAgro Sup, Marcy-l’Etoile, France & Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médicine, Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Paolo Ferrari
- Osservatorio Veterinario Italiano Cardiopatie, Azzano San Paolo, Italy
- Bis Clinica Veterinaria Orobica Anicura, Bergamo, Italy
| | - Philip R. Fox
- The Animal Medical Center, New York, NY, United States
| | - Jessica J. Hayward
- Department of Biomedical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jens Häggström
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stephen Davison
- Wisdom Panel, Mars Petcare Science & Diagnostics, Leicestershire, United Kingdom
| | - Mark D. Kittleson
- Veterinary Information Network and School of Veterinary Medicine and Epidemiology, University of California, Davis, Davis, CA, United States
| | - Frank van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Maria Longeri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luc Peelman
- Laboratory Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Pascale Smets
- Small Animal Department, Ghent University, Merelbeke, Belgium
| | | | - Bart J. G. Broeckx
- Laboratory Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Abstract
Practical relevance: Hypertrophic cardiomyopathy (HCM) is the most common form of feline
cardiomyopathy observed clinically and may affect up to approximately 15% of
the domestic cat population, primarily as a subclinical disease.
Fortunately, severe HCM, leading to heart failure or arterial
thromboembolism (ATE), only occurs in a small proportion of these cats. Patient group: Domestic cats of any age from 3 months upward, of either sex and of any
breed, can be affected. A higher prevalence in male and domestic shorthair
cats has been reported. Diagnostics: Subclinical feline HCM may or may not produce a heart murmur or gallop sound.
Substantial left atrial enlargement can often be identified radiographically
in cats with severe HCM. Biomarkers should not be relied on solely to
diagnose the disease. While severe feline HCM can usually be diagnosed via
echocardiography alone, feline HCM with mild to moderate left ventricular
(LV) wall thickening is a diagnosis of exclusion, which means there is no
definitive test for HCM in these cats and so other disorders that can cause
mild to moderate LV wall thickening (eg, hyperthyroidism, systemic
hypertension, acromegaly, dehydration) need to be ruled out. Key findings: While a genetic cause of HCM has been identified in two breeds and is
suspected in another, for most cats the cause is unknown. Systolic anterior
motion of the mitral valve (SAM) is the most common cause of dynamic left
ventricular outflow tract obstruction (DLVOTO) and, in turn, the most common
cause of a heart murmur with feline HCM. While severe DLVOTO is probably
clinically significant and so should be treated, lesser degrees probably are
not. Furthermore, since SAM can likely be induced in most cats with HCM, the
distinction between HCM without obstruction and HCM with obstruction (HOCM)
is of limited importance in cats. Diastolic dysfunction, and its
consequences of abnormally increased atrial pressure leading to signs of
heart failure, and sluggish atrial blood flow leading to ATE, is the primary
abnormality that causes clinical signs and death in affected cats. Treatment
(eg, loop diuretics) is aimed at controlling heart failure. Preventive
treatment (eg, antithrombotic drugs) is aimed at reducing the risk of
complications (eg, ATE). Conclusions: Most cats with HCM show no overt clinical signs and live a normal or
near-normal life despite this disease. However, a substantial minority of
cats develop overt clinical signs referable to heart failure or ATE that
require treatment. For most cats with clinical signs caused by HCM, the
long-term prognosis is poor to grave despite therapy. Areas of uncertainty: Genetic mutations (variants) that cause HCM have been identified in a few
breeds, but, despite valiant efforts, the cause of HCM in the vast majority
of cats remains unknown. No treatment currently exists that reverses or even
slows the cardiomyopathic process in HCM, again despite valiant efforts. The
search goes on.
Collapse
Affiliation(s)
- Mark D Kittleson
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis, and Veterinary Information Network, 777 West Covell Boulevard, Davis, CA 95616, USA
| | - Etienne Côté
- Department of Companion Animals, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|