1
|
Hlongwane NL, Dzomba EF, Hadebe K, van der Nest MA, Pierneef R, Muchadeyi FC. Identification of Signatures of Positive Selection That Have Shaped the Genomic Landscape of South African Pig Populations. Animals (Basel) 2024; 14:236. [PMID: 38254405 PMCID: PMC10812692 DOI: 10.3390/ani14020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
South Africa boasts a diverse range of pig populations, encompassing intensively raised commercial breeds, as well as indigenous and village pigs reared under low-input production systems. The aim of this study was to investigate how natural and artificial selection have shaped the genomic landscape of South African pig populations sampled from different genetic backgrounds and production systems. For this purpose, the integrated haplotype score (iHS), as well as cross population extended haplotype homozygosity (XP-EHH) and Lewontin and Krakauer's extension of the Fst statistic based on haplotype information (HapFLK) were utilised. Our results revealed several population-specific signatures of selection associated with the different production systems. The importance of natural selection in village populations was highlighted, as the majority of genomic regions under selection were identified in these populations. Regions under natural and artificial selection causing the distinct genetic footprints of these populations also allow for the identification of genes and pathways that may influence production and adaptation. In the context of intensively raised commercial pig breeds (Large White, Kolbroek, and Windsnyer), the identified regions included quantitative loci (QTLs) associated with economically important traits. For example, meat and carcass QTLs were prevalent in all the populations, showing the potential of village and indigenous populations' ability to be managed and improved for such traits. Results of this study therefore increase our understanding of the intricate interplay between selection pressures, genomic adaptations, and desirable traits within South African pig populations.
Collapse
Affiliation(s)
- Nompilo L. Hlongwane
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
| | - Magriet A. van der Nest
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Rian Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Farai C. Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
| |
Collapse
|
2
|
Wang X, Wang L, Shi L, Zhang P, Li Y, Li M, Tian J, Wang L, Zhao F. GWAS of Reproductive Traits in Large White Pigs on Chip and Imputed Whole-Genome Sequencing Data. Int J Mol Sci 2022; 23:13338. [PMID: 36362120 PMCID: PMC9656588 DOI: 10.3390/ijms232113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/09/2023] Open
Abstract
Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Du Z, D’Alessandro E, Asare E, Zheng Y, Wang M, Chen C, Wang X, Song C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Reproductive Candidate Genes. Genes (Basel) 2022; 13:genes13081359. [PMID: 36011270 PMCID: PMC9407582 DOI: 10.3390/genes13081359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Retrotransposons account for more than one-third of the pig reference genome. On account of the genome variability in different breeds, structural variation (SV) caused by retrotranspos-on-generated deletion or insertion (indel) may have a function in the genome. Litter size is one of the most important reproductive traits and significantly impacts profitability in terms of pig production. We used the method of bioinformatics, genetics, and molecular biology to make an analysis among different pig genomes. Predicted 100 SVs were annotated as retrotransposon indel in 20 genes related to reproductive performance. The PCR detection based on these predicted SVs revealed 20 RIPs in 20 genes, that most RIPs (12) were generated by SINE indel, and eight RIPs were generated by the ERV indel. We selected 12 RIPs to make the second round PCR detection in 24 individuals among nine pig breeds. The PCR detection results revealed that the RIP-A1CF-4 insertion in the breed of Bama, Large White, and Meishan only had the homozygous genotype but low to moderately polymorphisms were present in other breeds. We found that RIP-CWH43-9, RIP-IDO2-9, RIP-PRLR-6, RIP-VMP1-12, and RIP-OPN-1 had a rich polymorphism in the breed of Large White pigs. The statistical analysis revealed that RIP-CWH43-9 had a SINE insertion profitable to the reproductive traits of TNB and NBA but was significantly affected (p < 0.01) and (p < 0.05) in the reproductive traits of litter birthweight (LW) in Large White. On the other hand, the SINE insertion in IDO2-9 may be a disadvantage to the reproductive traits of LW, which was significantly affected (p < 0.05) in Large White. These two RIPs are significant in pig genome research and could be useful molecular markers in the breeding system.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy;
| | - Emmanuel Asare
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
4
|
Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. Heterozygosity and homozygosity regions affect reproductive success and the loss of reproduction: a case study with litter traits in pigs. Comput Struct Biotechnol J 2022; 20:4060-4071. [PMID: 35983229 PMCID: PMC9364102 DOI: 10.1016/j.csbj.2022.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Runs of heterozygosity (ROHet) and homozygosity (ROH) harbor useful information related to traits of interest. There is a lack of investigating the effect of ROHet and ROH on reproductive success and the loss of reproduction in mammals. Here, we detected and characterized the ROHet and ROH patterns in the genomes of Chinese indigenous pigs (i.e., Jinhua, Chun’an, Longyou Black, and Shengxian Spotted pigs), revealing the similar genetic characteristics of indigenous pigs. Later, we highlighted the underlying litter traits-related ROHet and ROH using association analysis with linear model in these four indigenous pig breeds. To pinpoint the promising candidate genes associated with litter traits, we further in-depth explore the selection patterns of other five pig breeds (i.e., Erhualian, Meishan, Minzhu, Rongchang, and Diqing pigs) with different levels of reproduction performance at the underlying litter traits-related ROHet and ROH using FST and genetic diversity ratio. Then, we identified a set of known and novel candidate genes associated with reproductive performance in pigs. For the novel candidate genes (i.e., CCDC91, SASH1, SAMD5, MACF1, MFSD2A, EPC2, and MBD5), we obtained public available datasets and performed multi-omics analyses integrating transcriptome-wide association studies and comparative single-cell RNA-seq analyses to uncover the roles of them in mammalian reproductive performance. The genes have not been widely reported to be fertility-related genes and can be complementally considered as prior biological information to modify genomic selections models that benefits pig genetic improvement of litter traits. Besides, our findings provide new insights into the function of ROHet and ROH in mammals.
Collapse
|