1
|
Davoudi P, Do DN, Rathgeber B, Colombo S, Sargolzaei M, Plastow G, Wang Z, Miar Y. Identification of consensus homozygous regions and their associations with growth and feed efficiency traits in American mink. BMC Genom Data 2024; 25:68. [PMID: 38982354 PMCID: PMC11234557 DOI: 10.1186/s12863-024-01252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes within the significant regions are known for their involvement in growth and body size development, including MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to explore the associations between homozygous regions with growth and feed efficiency traits in American mink. Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency traits, that can be utilized in developing a sustainable breeding program for mink.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc, Plain City, OH, USA
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
2
|
Wu X, Xiang D, Zhang W, Ma Y, Zhao G, Yin Z. Identification of Breed-Specific SNPs of Danish Large White Pig in Comparison with Four Chinese Local Pig Breed Genomes. Genes (Basel) 2024; 15:623. [PMID: 38790252 PMCID: PMC11120843 DOI: 10.3390/genes15050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Genetic variation facilitates the evolution, environmental adaptability, and biodiversity of organisms. Danish Large White (LW) pigs have more desirable phenotypes compared with local Chinese pigs, which have difficulty adapting to the modern swine industry. However, the genome-wide mutational differences between these pig breeds are yet to be evaluated. Therefore, this study aimed to evaluate genomic variation and identify breed-specific SNPs in Danish LW pigs. Here, 43 LW, 15 Diqing Tibetan (DQZ), and 15 Diannan small-ear (DN) pigs whose genomes were re-sequenced with 5× depth were selected. This was followed by a conjoined analysis of our previous resequencing data of 24 Anqing six-end white (AQ) and six Asian wild (SS) pigs. In total, 39,158,378 SNPs and 13,143,989 insertion-deletions were obtained in all breeds. The variation number of LW pigs was the lowest, with 287,194 breed-specific and 1289 non-synonymous SNPs compared with Chinese breeds. Functional analysis of the breed-specific non-synonymous SNPs indicated that these mutations were mainly associated with the reproductive performance, feed intake, and feed conversion ratio of LW pigs. These findings provide a theoretical basis for genetic improvements in the Chinese swine industry.
Collapse
Affiliation(s)
- Xudong Wu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Decai Xiang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China
| | - Wei Zhang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yu Ma
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Zhang W, Jiang Y, Ni Z, Zhou M, Liu L, Li X, Su S, Wang C. Identification of Copy Number Variations and Selection Signatures in Wannan Spotted Pigs by Whole Genome Sequencing Data: A Preliminary Study. Animals (Basel) 2024; 14:1419. [PMID: 38791637 PMCID: PMC11117326 DOI: 10.3390/ani14101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Copy number variation (CNV) is an important structural variation used to elucidate complex economic traits. In this study, we sequenced 25 Wannan spotted pigs (WSPs) to detect their CNVs and identify their selection signatures compared with those of 10 Asian wild boars. A total of 14,161 CNVs were detected in the WSPs, accounting for 0.72% of the porcine genome. The fixation index (Fst) was used to identify the selection signatures, and 195 CNVs with the top 1% of the Fst value were selected. Eighty genes were identified in the selected CNV regions. Functional GO and KEGG analyses revealed that the genes within these selected CNVs are associated with key traits such as reproduction (GAL3ST1 and SETD2), fatty acid composition (PRKG1, ACACA, ACSL3, UGT8), immune system (LYZ), ear size (WIF1), and feed efficiency (VIPR2). The findings of this study contribute novel insights into the genetic CNVs underlying WSP characteristics and provide essential information for the protection and utilization of WSP populations.
Collapse
Affiliation(s)
- Wei Zhang
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Yao Jiang
- National Animal Husbandry Service, Beijing 100125, China;
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei 231283, China;
| | - Mei Zhou
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Linqing Liu
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Xiaoyu Li
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Shiguang Su
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Chonglong Wang
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| |
Collapse
|
4
|
Zhang W, Xu C, Zhou M, Liu L, Ni Z, Su S, Wang C. Copy number variants selected during pig domestication inferred from whole genome resequencing. Front Vet Sci 2024; 11:1364267. [PMID: 38505001 PMCID: PMC10950068 DOI: 10.3389/fvets.2024.1364267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Over extended periods of natural and artificial selection, China has developed numerous exceptional pig breeds. Deciphering the germplasm characteristics of these breeds is crucial for their preservation and utilization. While many studies have employed single nucleotide polymorphism (SNP) analysis to investigate the local pig germplasm characteristics, copy number variation (CNV), another significant type of genetic variation, has been less explored in understanding pig resources. In this study, we examined the CNVs of 18 Wanbei pigs (WBP) using whole genome resequencing data with an average depth of 12.61. We identified a total of 8,783 CNVs (~30.07 Mb, 1.20% of the pig genome) in WBP, including 8,427 deletions and 356 duplications. Utilizing fixation index (Fst), we determined that 164 CNVs were within the top 1% of the Fst value and defined as under selection. Functional enrichment analyses of the genes associated with these selected CNVs revealed genes linked to reproduction (SPATA6, CFAP43, CFTR, BPTF), growth and development (NR6A1, SMYD3, VIPR2), and immunity (PARD3, FYB2). This study enhances our understanding of the genomic characteristics of the Wanbei pig and offers a theoretical foundation for the future breeding of this breed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chengliang Xu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Linqing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei, China
| | - Shiguang Su
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| |
Collapse
|
5
|
Li W, Wu X, Xiang D, Zhang W, Wu L, Meng X, Huo J, Yin Z, Fu G, Zhao G. Genome-Wide Detection for Runs of Homozygosity in Baoshan Pigs Using Whole Genome Resequencing. Genes (Basel) 2024; 15:233. [PMID: 38397222 PMCID: PMC10887577 DOI: 10.3390/genes15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Baoshan pigs (BS) are a local breed in Yunnan Province that may face inbreeding owing to its limited population size. To accurately evaluate the inbreeding level of the BS pig population, we used whole-genome resequencing to identify runs of homozygosity (ROH) regions in BS pigs, calculated the inbreeding coefficient based on pedigree and ROH, and screened candidate genes with important economic traits from ROH islands. A total of 22,633,391 SNPS were obtained from the whole genome of BS pigs, and 201 ROHs were detected from 532,450 SNPS after quality control. The number of medium-length ROH (1-5 Mb) was the highest (98.43%), the number of long ROH (>5 Mb) was the lowest (1.57%), and the inbreeding of BS pigs mainly occurred in distant generations. The inbreeding coefficient FROH, calculated based on ROH, was 0.018 ± 0.016, and the FPED, calculated based on the pedigree, was 0.027 ± 0.028, which were positively correlated. Forty ROH islands were identified, containing 507 genes and 891 QTLs. Several genes were associated with growth and development (IGFALS, PTN, DLX5, DKK1, WNT2), meat quality traits (MC3R, ACSM3, ECI1, CD36, ROCK1, CACNA2D1), and reproductive traits (NPW, TSHR, BMP7). This study provides a reference for the protection and utilization of BS pigs.
Collapse
Affiliation(s)
- Wenjun Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xudong Wu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Decai Xiang
- Institute of Pig and Animal Research, Yunnan Academy of Animal Husbandry and Veterinary Science, Kunming 650201, China;
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Lingxiang Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xintong Meng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Guowen Fu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| |
Collapse
|
6
|
Fan S, Kong C, Chen Y, Zheng X, Zhou R, Zhang X, Wu X, Zhang W, Ding Y, Yin Z. Copy Number Variation Analysis Revealed the Evolutionary Difference between Chinese Indigenous Pigs and Asian Wild Boars. Genes (Basel) 2023; 14:472. [PMID: 36833399 PMCID: PMC9957247 DOI: 10.3390/genes14020472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Copy number variation (CNV) has been widely used to study the evolution of different species. We first discovered different CNVs in 24 Anqingliubai pigs and 6 Asian wild boars using next-generation sequencing at the whole-genome level with 10× depth to understand the relationship between genetic evolution and production traits in wild boars and domestic pigs. A total of 97,489 CNVs were identified and divided into 10,429 copy number variation regions (CNVRs), occupying 32.06% of the porcine genome. Chromosome 1 had the most CNVRs, and chromosome 18 had the least. Ninety-six CNVRs were selected using VST 1% based on the signatures of all CNVRs, and sixty-five genes were identified in the selected regions. These genes were strongly correlated with traits distinguishing groups by enrichment in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, such as growth (CD36), reproduction (CIT, RLN), detoxification (CYP3A29), and fatty acid metabolism (ELOVL6). The QTL overlapping regions were associated with meat traits, growth, and immunity, which was consistent with CNV analysis. Our findings increase the understanding of evolved genome structural variations between wild boars and domestic pigs, and provide new molecular biomarkers to guide breeding and the efficient use of available genetic resources.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230036, China
| | - Yige Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xudong Wu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Zhang W, Liu L, Zhou M, Su S, Dong L, Meng X, Li X, Wang C. Assessing Population Structure and Signatures of Selection in Wanbei Pigs Using Whole Genome Resequencing Data. Animals (Basel) 2022; 13:ani13010013. [PMID: 36611624 PMCID: PMC9817800 DOI: 10.3390/ani13010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Wanbei pig (WBP) is one of the indigenous pig resources in China and has many germplasm characteristics. However, research on its genome is lacking. To assess the genomic variation, population structure, and selection signatures, we resequenced 18 WBP for the first time and performed a comprehensive analysis with resequenced data of 10 Asian wild boars. In total, 590.03 Gb of data and approximately 41 million variants were obtained. Polymorphism level (θπ) ratio and genetic differentiation (fixation index)-based cross approaches were applied, and 539 regions, which harbored 176 genes, were selected. Functional analysis of the selected genes revealed that they were associated with lipid metabolism (SCP2, APOA1, APOA4, APOC3, CD36, BCL6, ADCY8), backfat thickness (PLAG1, CACNA2D1), muscle (MYOG), and reproduction (CABS1). Overall, our results provide a valuable resource for characterizing the uniqueness of WBP and a basis for future breeding.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lin Dong
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinxin Meng
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xueting Li
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
8
|
Detection of Selection Signatures in Anqing Six-End-White Pigs Based on Resequencing Data. Genes (Basel) 2022; 13:genes13122310. [PMID: 36553577 PMCID: PMC9777694 DOI: 10.3390/genes13122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
As a distinguished Chinese indigenous pig breed that exhibits disease resistance and high meat quality, the Anqing six-end-white (AQ) pig represents a valuable germplasm resource for improving the quality of the pig breeding industry. In this study, 24 AQ pigs that were distantly blood-related and 6 Asian Wild Boar (AWB) were selected for 10× deep-genome resequencing. The signatures of the selection were analyzed to explore the genetic basis of their germplasm characteristics and to identify excellent germplasm-related functional genes based on NGS data. A total of 49,289,052 SNPs and 6,186,123 indels were detected across the genome in 30 pigs. Most of the genetic variations were synonym mutations and existed in the intergenic region. We identified 275 selected regions (top 1%) harboring 85 genes by applying a crossover approach based on genetic differentiation (FST) and polymorphism levels (π ratio). Some genes were found to be positively selected in AQ pigs' breeding. The SMPD4 and DDX18 genes were involved in the immune response to pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV). The BCL6 and P2RX6 genes were involved in biological regulation of immune T cells and phagocytes. The SLC7A4 and SPACA4 genes were related to reproductive performance. The MSTN and HIF1A genes were related to fat deposition and muscle development. Moreover, 138 overlapping regions were detected in selected regions and ROH islands of AQ pigs. Additionally, we found that the QTLs with the most overlapping regions were related to back fat thickness, meat color, pH value, fatty acid content, immune cells, parasitic immunity, and bacterial immunity. Based on functional enrichment analysis and QTLs mapping, we conducted further research on the molecular genetic basis of germplasm traits (disease resistance and excellent meat quality). These results are a reliable resource for conserving germplasm resources and exploiting molecular markers of AQ pigs.
Collapse
|
9
|
Population Structure and Selection Signatures Underlying Domestication Inferred from Genome-Wide Copy Number Variations in Chinese Indigenous Pigs. Genes (Basel) 2022; 13:genes13112026. [PMID: 36360263 PMCID: PMC9690591 DOI: 10.3390/genes13112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Single nucleotide polymorphism was widely used to perform genetic and evolution research in pigs. However, little is known about the effect of copy number variation (CNV) on characteristics in pigs. This study performed a genome-wide comparison of CNVs between Wannan black pigs (WBP) and Asian wild boars (AWB), using whole genome resequencing data. By using Manta, we detected in total 28,720 CNVs that covered approximately 1.98% of the pig genome length. We identified 288 selected CNVs (top 1%) by performing Fst statistics. Functional enrichment analyses for genes located in selected CNVs were found to be muscle related (NDN, TMOD4, SFRP1, and SMYD3), reproduction related (GJA1, CYP26B1, WNT5A, SRD5A2, PTPN11, SPEF2, and CCNB1), residual feed intake (RFI) related (MAP3K5), and ear size related (WIF1). This study provides essential information on selected CNVs in Wannan black pigs for further research on the genetic basis of the complex phenotypic and provides essential information for direction in the protection and utilization of Wannan black pig.
Collapse
|