1
|
Timofeeva OS, Logvinov SV, Petrov IA, Tikhonovskaya OA, Samoilova YG, Gaifulina ZF, Mustafina LR, Petrova MS, Zhdankina AA, Kutsenko IG, Kudlay DA, Sidorenkova KA. Effect of Gonadotropin-Releasing Hormone Antagonist on the Expression Patterns of Insulin-Like Growth Factor 1, Androgen Receptor, and Luteinizing Hormone Receptor in an Experimental Rat Model of Functional Ovarian Cysts. Bull Exp Biol Med 2024; 176:403-406. [PMID: 38342811 DOI: 10.1007/s10517-024-06033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 02/13/2024]
Abstract
We studied the expression of insulin-like growth factor 1 (IGF-1), androgen receptor (AR) and luteinizing hormone receptor (LHR) in the ovaries under the conditions of the modeling and subsequent treatment of functional ovarian cysts with gonadotropin-releasing hormone antagonist (ant-GnRH). The intensity of IGF-1, LHR, and AR expression in the generative elements of rat ovaries changed under conditions of functional ovarian cysts simulation, as well as during treatment with ant-GnRH. In both experimental groups, the expression levels of the studied markers in preantral follicles and epithelial lining of cysts were found to be related to the number of growing follicles and cysts. A divergence of LHR and AR expression indices and a more pronounced decrease in the number of cystic cavities were observed in the group receiving ant-GnRH. These changes demonstrate a positive effect of ant-GnRH on intra-ovarian regulatory factors and a therapeutic effect in functional ovarian cysts.
Collapse
Affiliation(s)
- O S Timofeeva
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.
| | - S V Logvinov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - I A Petrov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - O A Tikhonovskaya
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - Yu G Samoilova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - Zh F Gaifulina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - L R Mustafina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - M S Petrova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A A Zhdankina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - I G Kutsenko
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - D A Kudlay
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - K A Sidorenkova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
2
|
Wang C, Yang L, Xiao T, Li J, Liu Q, Xiong S. Identification and expression analysis of zebrafish gnaq in the hypothalamic–Pituitary–Gonadal axis. Front Genet 2022; 13:1015796. [DOI: 10.3389/fgene.2022.1015796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The G proteins have emerged as essential molecular switches in a wide variety of signal transduction pathways. Gαq, encoded by G protein subunit alpha q (gnaq), is a member of the G proteins and participates in regulating important biological activities in mammals; however, its function and regulatory mechanism in teleost remain largely unclear. In the current study, we cloned the cDNA of gnaq from zebrafish (Danio rerio) and investigated the expression characteristics of Gαq/gnaq in reproductive tissues. RT-PCR and WISH analyses showed that gnaq was widely expressed in zebrafish tissues, with high expression in the brain, olfactory brain, and hypothalamus. During the embryonic development stage, the gnaq was mainly distributed in the hypothalamus after 72 h post-fertilization. In addition, immunohistochemistry analysis revealed that the Gαq protein was highly expressed in the diffuse nucleus of the inferior hypothalamic lobe (DIL), ventral zone of the periventricular hypothalamus (Hv), and caudal zone of the periventricular hypothalamus (Hc) in adult zebrafish. Furthermore, in the gonads, the Gαq protein was found in oocytes of all stages, except spermatids. Lastly, the gnaq mRNA exhibited relatively low expression in gonads on Day 4 during the reproductive cycle, while increasing drastically in the hypothalamus and pituitary afterward. Altogether, our results suggest that gnaq/Gαq might be important in fish reproduction.
Collapse
|
3
|
Viana ACNPCS, Freitas JLS, Magalhães LC, Campos LB, Silva AR, Oliveira MF, Freitas VJF, Melo LM. Ovarian gene expression in collared peccary (Pecari tajacu Linnaeus, 1758) subjected to gonadotropin stimulation protocols. Reprod Domest Anim 2020; 56:351-359. [PMID: 33259113 DOI: 10.1111/rda.13872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
Ovarian response of collared peccaries (Pecari tajacu), after hormonal stimulation with gonadotropin association (eCG/hCG), was accessed by both gene expression and follicular development. Thus, collared peccaries (n = 8) were treated with the dose used for sows (swine dose, SWD) or with dose adjusted for peccary's weight (allometric dose, ALD). The gene expression of receptors was evaluated for both gonadotropins (FSHR and LHCGR) and growth factors (proteins codified by TGFβR-1, BMPR1-A and BMPR2 genes) in antral follicles, cortex and corpora haemorrhagica (CH). Five days after gonadotropin injection, all females presented CH. The ovulation rate was similar (p > .05) between SWD (4.00 ± 1.17) and ALD (2.50 ± 0.43) group. The total number of follicles per animal and amounts of small (<3 mm), medium (3-5 mm) and large (>5 mm) follicles was similar among groups. However, SWD produced large follicles heavier than ALD group, as accessed by weight of follicular wall biopsies. Ovarian follicles expressed both gonadotropin and growth factor receptors at levels which are independent from gonadotropin dose. In conclusion, the two gonadotropin doses (SWD and ALD) can be used for ovarian stimulation of collared peccary. Additionally, FSH and growth factors (TGFβR-1, BMPR1-A and BMPR2) receptors are more expressed in the early follicle development, while LH receptor seems to be more important in the final of follicular growth.
Collapse
Affiliation(s)
- Ana Clara N P C S Viana
- Laboratory of Physiology and Control of Reproduction, Veterinary School, State University of Ceará (UECE), Fortaleza, Brazil
| | - Jeferson L S Freitas
- Laboratory of Physiology and Control of Reproduction, Veterinary School, State University of Ceará (UECE), Fortaleza, Brazil
| | - Lívia C Magalhães
- Laboratory of Physiology and Control of Reproduction, Veterinary School, State University of Ceará (UECE), Fortaleza, Brazil
| | - Lívia B Campos
- Laboratory of Animal Germplasm Conservation, Department of Animal Science, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Brazil
| | - Alexandre R Silva
- Laboratory of Animal Germplasm Conservation, Department of Animal Science, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Brazil
| | - Moacir F Oliveira
- Laboratory of Animal Germplasm Conservation, Department of Animal Science, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, Veterinary School, State University of Ceará (UECE), Fortaleza, Brazil
| | - Luciana M Melo
- Laboratory of Physiology and Control of Reproduction, Veterinary School, State University of Ceará (UECE), Fortaleza, Brazil.,Molecular Genetics Research Unit, University Center Fametro (Unifametro), Fortaleza, Brazil
| |
Collapse
|
4
|
Haen SM, Heinonen M, Bjorkman S, Soede NM, Peltoniemi OAT. Progesterone and Luteinizing hormone secretion patterns in early pregnant gilts. Reprod Domest Anim 2020; 55:795-804. [PMID: 32298513 DOI: 10.1111/rda.13686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
Abstract
We studied luteinizing hormone (LH) pulsatility and episodic progesterone release of the corpus luteum (CL) on Day 11 and Day 21 in inseminated gilts and aimed to establish a relationship between these two hormones. Blood was collected at 15-min intervals for 12 hr on Days 11, 16 and 21 from a vena cava caudalis catheter. At euthanasia, eight gilts were pregnant and six gilts were not pregnant. Progesterone parameters (basal, mean, pulse frequency and pulse amplitude) did not differ between pregnant and non-pregnant gilts on Day 11, LH pulse frequency and amplitude tended to differ (p = .07 and p = .079). In pregnant gilts, basal and mean progesterone, progesterone pulse amplitude and frequency declined significantly from Day 11 to Day 21 (p < .05). A significant decline was also seen in the LH pulse amplitude from Day 11 to Day 21 (p < .05). None of the LH pulses was followed by a progesterone pulse within 1 hr on Day 21. On Day 11 and Day 21 appeared a synchronicity in the LH pulse pattern, as there were two or three LH pulses in 12 hr and these LH pulses appeared in the same time window. We conclude that on Day 11 and Day 21 of pregnancy in gilts, progesterone pulses do not follow an LH pulse within one hour. Further we demonstrated that the successful or not successful formation of a CL of pregnancy is independent of progesterone release on Day 11 after insemination. We confirmed the decline of progesterone from Day 11 to Day 21 in the vena cava caudalis and could demonstrate that this decline is partly due to lower progesterone pulse amplitude and frequency and that the decline occurs simultaneously with a decline in LH pulse amplitude.
Collapse
Affiliation(s)
- Silke M Haen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Mari Heinonen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Stefan Bjorkman
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Nicoline M Soede
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Olli A T Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| |
Collapse
|
5
|
Quan Q, Zheng Q, Ling Y, Fang F, Chu M, Zhang X, Liu Y, Li W. Comparative analysis of differentially expressed genes between the ovaries from pregnant and nonpregnant goats using RNA-Seq. ACTA ACUST UNITED AC 2019; 26:3. [PMID: 31080783 PMCID: PMC6503366 DOI: 10.1186/s40709-019-0095-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Background A multitude of genes tightly regulate ovarian follicular development and hormone secretion. These complex and coordinated biological processes are altered during pregnancy. In order to further understand the regulatory role of these genes during pregnancy, it is important to screen the differentially expressed genes (DEGs) in the ovaries of pregnant and nonpregnant mammals. To detect the genes associated with the development of pregnancy in goats, DEGs from the ovaries from pregnant and nonpregnant Anhui white goats (pAWGs and nAWGs, respectively) were analyzed using RNA sequencing technology (RNA-Seq). Results In this study, 13,676,394 and 13,549,560 clean reads were generated from pAWGs and nAWGs, respectively, and 1724 DEGs were identified between the two libraries. Compared with nAWGs, 1033 genes were upregulated and 691 genes were downregulated in pAWGs, including PGR, PRLR, STAR and CYP19A1, which play important roles in goat reproduction. Gene Ontology analysis showed that the DEGs were enriched for 49 functional GO terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that 397 DEGs were significantly enriched in 13 pathways, including “cell cycle”, “cytokine–cytokine receptor interaction” and “steroid biosynthesis”, suggesting that the genes may be associated with cell cycle regulation, follicular development and hormone secretion to regulate the reproduction process. Additionally, quantitative real-time PCR was used to verify the reliability of the RNA-Seq data. Conclusions The data obtained in this work enrich the genetic resources of goat and provide a further understanding of the complex molecular regulatory mechanisms occurring during the development of pregnancy and reproduction in goats. The DEGs screened in this study may play an important role in follicular development and hormone secretion and they would provide scientific basis for related research in the future. Electronic supplementary material The online version of this article (10.1186/s40709-019-0095-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Quan
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,3College of Economy and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Qi Zheng
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Yinghui Ling
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Fugui Fang
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Mingxing Chu
- 4Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, CAAS, Beijing, 100193 China
| | - Xiaorong Zhang
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Yong Liu
- 5Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037 China
| | - Wenyong Li
- 5Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037 China
| |
Collapse
|
6
|
Zhou YJ, Wang XD, Xiao S, Yu DE, Wang LQ, Wang JH, Zhu HQ. Exposure to beta-cypermethrin impairs the reproductive function of female mice. Regul Toxicol Pharmacol 2018; 95:385-394. [DOI: 10.1016/j.yrtph.2018.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
|
7
|
Yang S, Zhou X, Pei Y, Wang H, He K, Zhao A. Identification of Differentially Expressed Genes in Porcine Ovaries at Proestrus and Estrus Stages Using RNA-Seq Technique. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9150723. [PMID: 29662904 PMCID: PMC5832140 DOI: 10.1155/2018/9150723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/29/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Estrus is an important factor for the fecundity of sows, and it is involved in ovulation and hormone secretion in ovaries. To better understand the molecular mechanisms of porcine estrus, the expression patterns of ovarian mRNA at proestrus and estrus stages were analyzed using RNA sequencing technology. A total of 2,167 differentially expressed genes (DEGs) were identified (P ≤ 0.05, |log2 Ratio| ≥ 1), of which 784 were upregulated and 1,383 were downregulated in the estrus compared with the proestrus group. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the cellular process, single-organism process, cell and cell part, and binding and metabolic process. In addition, a pathway analysis showed that these DEGs were significantly enriched in 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cell adhesion molecules, ECM-receptor interaction, and cytokine-cytokine receptor interaction. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) confirmed the differential expression of 10 selected DEGs. Many of the novel candidate genes identified in this study will be valuable for understanding the molecular mechanisms of the sow estrous cycle.
Collapse
Affiliation(s)
- Songbai Yang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Xiaolong Zhou
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yue Pei
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Han Wang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| |
Collapse
|