1
|
Kitaoka M, Yamashita YM. Running the gauntlet: challenges to genome integrity in spermiogenesis. Nucleus 2024; 15:2339220. [PMID: 38594652 PMCID: PMC11005813 DOI: 10.1080/19491034.2024.2339220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Species' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges. First, after two rounds of meiotic divisions, the genome lacks repair templates (no sister chromatids, no homologous chromosomes), making it incredibly vulnerable to any genomic insults over an extended time (typically days-weeks). Second, the sperm genome becomes transcriptionally silent, making it difficult to respond to new perturbations as spermiogenesis progresses. Third, the histone-to-protamine transition, which is essential to package the sperm genome, counterintuitively involves DNA break formation. How spermiogenesis handles these challenges remains poorly understood. In this review, we discuss each challenge and their intersection with the biology of protamines. Finally, we discuss the implication of protamines in the process of evolution.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Farias JG, Herrera-Belén L, Jimenez L, Beltrán JF. PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning. Int J Mol Sci 2024; 25:10267. [PMID: 39408595 PMCID: PMC11476296 DOI: 10.3390/ijms251910267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Protamines play a critical role in DNA compaction and stabilization in sperm cells, significantly influencing male fertility and various biotechnological applications. Traditionally, identifying these proteins is a challenging and time-consuming process due to their species-specific variability and complexity. Leveraging advancements in computational biology, we present PROTA, a novel tool that combines machine learning (ML) and deep learning (DL) techniques to predict protamines with high accuracy. For the first time, we integrate Generative Adversarial Networks (GANs) with supervised learning methods to enhance the accuracy and generalizability of protamine prediction. Our methodology evaluated multiple ML models, including Light Gradient-Boosting Machine (LIGHTGBM), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGBOOST), k-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), and Radial Basis Function-Support Vector Machine (RBF-SVM). During ten-fold cross-validation on our training dataset, the MLP model with GAN-augmented data demonstrated superior performance metrics: 0.997 accuracy, 0.997 F1 score, 0.998 precision, 0.997 sensitivity, and 1.0 AUC. In the independent testing phase, this model achieved 0.999 accuracy, 0.999 F1 score, 1.0 precision, 0.999 sensitivity, and 1.0 AUC. These results establish PROTA, accessible via a user-friendly web application. We anticipate that PROTA will be a crucial resource for researchers, enabling the rapid and reliable prediction of protamines, thereby advancing our understanding of their roles in reproductive biology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Jorge G. Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile;
| | - Luis Jimenez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| |
Collapse
|
3
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
4
|
Chhetri KB, Jang YH, Lansac Y, Maiti PK. DNA groove preference shift upon phosphorylation of a protamine-like cationic peptide. Phys Chem Chem Phys 2023; 25:31335-31345. [PMID: 37960891 DOI: 10.1039/d3cp03803c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protamines, arginine-rich DNA-binding proteins, are responsible for chromatin compaction in sperm cells, but their DNA groove preference, major or minor, is not clearly identified. We herein study the DNA groove preference of a short protamine-like cationic peptide before and after phosphorylation, using all-atom molecular dynamics and umbrella sampling simulations. According to various thermodynamic and structural analyses, a peptide in its non-phosphorylated native state prefers the minor groove over the major groove, but phosphorylation of the peptide bound to the minor groove not only reduces its binding affinity but also brings a serious deformation of the minor groove, eliminating the minor-groove preference. As protamines are heavily phosphorylated before binding to DNA, we expect that the structurally disordered phosphorylated protamines would prefer major grooves to enter into DNA during spermatogenesis.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, 91405 Orsay, France
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, 91405 Orsay, France
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Akbari H, Elyasi L, Khaleghi AA, Mohammadi M. The effect of zinc supplementation on improving sperm parameters in infertile diabetic men. J Obstet Gynaecol India 2023; 73:316-321. [PMID: 37701089 PMCID: PMC10492728 DOI: 10.1007/s13224-023-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/30/2023] [Indexed: 09/14/2023] Open
Abstract
Background and aims Diabetes mellitus (DM) may have different adverse effects on the male reproductive system. Zinc (Zn) is one of the necessary elements in the human and mammalian diet that plays an important role in scavenging reactive oxygen species (ROS) by providing antioxidant and anti-apoptotic properties. The aim of this study was to determine the protective effects of zinc supplements on sperm chromatin and the evaluation of sperm deoxyribonucleic acid (DNA) integrity in diabetic men. Methods In this interventional study, 43 infertile Iranian men in diabetic and non-diabetic groups were included. They were then randomly divided into two subgroups: normal saline intake and zinc sulfate intake (25 mg orally for 64 days each). Different indices of sperm analysis (number, morphology and motility) and testosterone levels were evaluated in four groups. Protamine deficiency and DNA fragmentation were assessed using chromomycin A3 (CMA3) and sperm chromatin dispersion (SCD) methods, respectively. Results Zinc supplementation reduced the deformity of neck and head of sperms (p < 0.05), as well as deformity of sperm tail in infertile diabetic men. Zinc administration ameliorated sperm motility types A, B and C (p < 0.05). Moreover, zinc administration reduced abnormal morphology and DNA fragmentation of sperms, which increased the SCD1 and SCD2 and reduced the SCD3 and SCD4 in both treated groups. Conclusion Zinc supplementation, as a powerful complement, is able to balance the effect of diabetes on sperm parameters, sperm chromatin and DNA integrity. Consequently, zinc supplementation can probably be considered a supportive compound in the diet of diabetic infertile men.
Collapse
Affiliation(s)
- Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Leila Elyasi
- Department of Anatomy, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Khaleghi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
6
|
Maside C, Recuero S, Salas-Huetos A, Ribas-Maynou J, Yeste M. Animal board invited review: An update on the methods for semen quality evaluation in swine - from farm to the lab. Animal 2023; 17:100720. [PMID: 36801527 DOI: 10.1016/j.animal.2023.100720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Pig breeding is mainly conducted through artificial insemination with liquid-stored semen. It is, therefore, crucial to ensure that sperm quality is over the standard thresholds, as reduced sperm motility, morphology or plasma membrane integrity are associated with reduced farrowing rates and litter sizes. This work aims to summarise the methods utilised in farms and research laboratories to evaluate sperm quality in pigs. The conventional spermiogram consists in the assessment of sperm concentration, motility and morphology, which are the most estimated variables in farms. Yet, while the determination of these sperm parameters is enough for farms to prepare seminal doses, other tests, usually carried out in specialised laboratories, may be required when boar studs exhibit a decreased reproductive performance. These methods include the evaluation of functional sperm parameters, such as plasma membrane integrity and fluidity, intracellular levels of calcium and reactive oxygen species, mitochondrial activity, and acrosome integrity, using fluorescent probes and flow cytometry. Furthermore, sperm chromatin condensation and DNA integrity, despite not being routinely assessed, may also help determine the causes of reduced fertilising capacity. Sperm DNA integrity can be evaluated through direct (Comet, transferase deoxynucleotide nick end labelling (TUNEL) and its in situ nick variant) or indirect tests (Sperm Chromatin Structure Assay, Sperm Chromatin Dispersion Test), whereas chromatin condensation can be determined with Chromomycin A3. Considering the high degree of chromatin packaging in pig sperm, which only have protamine 1, growing evidence suggests that complete decondensation of that chromatin is needed before DNA fragmentation through TUNEL or Comet can be examined.
Collapse
Affiliation(s)
- Carolina Maside
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Sandra Recuero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain.
| |
Collapse
|
7
|
Chhetri KB, Jang YH, Lansac Y, Maiti PK. Effect of phosphorylation of protamine-like cationic peptide on the binding affinity to DNA. Biophys J 2022; 121:4830-4839. [PMID: 36168289 PMCID: PMC9808561 DOI: 10.1016/j.bpj.2022.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Protamines are more arginine-rich and more basic than histones and are responsible for providing a highly compacted shape to the sperm heads in the testis. Phosphorylation and dephosphorylation are two events that occur in the late phase of spermatogenesis before the maturation of sperms. In this work, we have studied the effect of phosphorylation of protamine-like cationic peptides using all-atom molecular dynamics simulations. Through thermodynamic analyses, we found that phosphorylation reduces the binding efficiency of such cationic peptides on DNA duplexes. Peptide phosphorylation leads to a less efficient DNA condensation, due to a competition between DNA-peptide and peptide-peptide interactions. We hypothesize that the decrease of peptide bonds between DNA together with peptide self-assembly might allow an optimal re-organization of chromatin and an efficient condensation through subsequent peptide dephosphorylation. Based on the globular and compact conformations of phosphorylated peptides mediated by arginine-phosphoserine H-bonding, we furthermore postulate that phosphorylated protamines could more easily intrude into chromatin and participate to histone release through disruption of histone-histone and histone-DNA binding during spermatogenesis.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea; GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France; Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, Orsay, France.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
8
|
Buttress T, He S, Wang L, Zhou S, Saalbach G, Vickers M, Li G, Li P, Feng X. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature 2022; 611:614-622. [PMID: 36323776 PMCID: PMC9668745 DOI: 10.1038/s41586-022-05386-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Sperm chromatin is typically transformed by protamines into a compact and transcriptionally inactive state1,2. Sperm cells of flowering plants lack protamines, yet they have small, transcriptionally active nuclei with chromatin condensed through an unknown mechanism3,4. Here we show that a histone variant, H2B.8, mediates sperm chromatin and nuclear condensation in Arabidopsis thaliana. Loss of H2B.8 causes enlarged sperm nuclei with dispersed chromatin, whereas ectopic expression in somatic cells produces smaller nuclei with aggregated chromatin. This result demonstrates that H2B.8 is sufficient for chromatin condensation. H2B.8 aggregates transcriptionally inactive AT-rich chromatin into phase-separated condensates, which facilitates nuclear compaction without reducing transcription. Reciprocal crosses show that mutation of h2b.8 reduces male transmission, which suggests that H2B.8-mediated sperm compaction is important for fertility. Altogether, our results reveal a new mechanism of nuclear compaction through global aggregation of unexpressed chromatin. We propose that H2B.8 is an evolutionary innovation of flowering plants that achieves nuclear condensation compatible with active transcription.
Collapse
Affiliation(s)
- Toby Buttress
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Shengbo He
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Liang Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Shaoli Zhou
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Gerhard Saalbach
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Martin Vickers
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pilong Li
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoqi Feng
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK.
| |
Collapse
|
9
|
Arévalo L, Esther Merges G, Schneider S, Schorle H. Protamines: lessons learned from mouse models. Reproduction 2022; 164:R57-R74. [PMID: 35900356 DOI: 10.1530/rep-22-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
In brief Protamines package and shield the paternal DNA in the sperm nucleus and have been studied in many mouse models over decades. This review recapitulates and updates our knowledge about protamines and reveals a surprising complexity in protamine function and their interactions with other sperm nuclear proteins. Abstract The packaging and safeguarding of paternal DNA in the sperm cell nucleus is a critical feature of proper sperm function. Histones cannot mediate the necessary hypercondensation and shielding of chromatin required for motility and transit through the reproductive tracts. Paternal chromatin is therefore reorganized and ultimately packaged by protamines. In most mammalian species, one protamine is present in mature sperm (PRM1). In rodents and primates among others, however, mature sperm contain a second protamine (PRM2). Unlike PRM1, PRM2 is cleaved at its N-terminal end. Although protamines have been studied for decades due to their role in chromatin hypercondensation and involvement in male infertility, key aspects of their function are still unclear. This review updates and integrates our knowledge of protamines and their function based on lessons learned from mouse models and starts to answer open questions. The combined insights from recent work reveal that indeed both protamines are crucial for the production of functional sperm and indicate that the two protamines perform distinct functions beyond simple DNA compaction. Loss of one allele of PRM1 leads to subfertility whereas heterozygous loss of PRM2 does not. Unprocessed PRM2 seems to play a distinct role related to the eviction of intermediate DNA-bound proteins and the incorporation of both protamines into chromatin. For PRM1, on the other hand, heterozygous loss leads to strongly reduced sperm motility as the main phenotype, indicating that PRM1 might be important for processes ensuring correct motility, apart from DNA compaction.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.,Bonn Technology Campus, Core Facility 'Gene-Editing', University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
11
|
Balasubramanian S, Perumal E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit Rev Toxicol 2022; 52:449-468. [PMID: 36422650 DOI: 10.1080/10408444.2022.2122771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous in vitro, in vivo, and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis). It includes dental fluorosis, skeletal fluorosis, and fluoride toxicity in soft tissues. The mechanism of fluoride toxicity has been reviewed extensively. However, epigenetic regulation in fluoride toxicity has not been reviewed. This systematic review summarizes the current knowledge regarding fluoride-induced epigenetic toxicity in the in vitro, in vivo, and epidemiological studies in mammalian systems. We examined four databases for the association between epigenetics and fluoride exposure. Out of 932 articles (as of 31 March 2022), 39 met our inclusion criteria. Most of the studies focused on different genes, and overall, preliminary evidence for epigenetic regulation of fluoride toxicity was identified. We further highlight the need for epigenome studies rather than candidate genes and provide recommendations for future research. Our results indicate a correlation between fluoride exposure and epigenetic processes. Further studies are warranted to elucidate and confirm the mechanism of epigenetic alterations mediated fluoride toxicity.
Collapse
Affiliation(s)
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
12
|
Ren S, Chen X, Tian X, Yang D, Dong Y, Chen F, Fang X. The expression, function, and utilization of Protamine1: a literature review. Transl Cancer Res 2022; 10:4947-4957. [PMID: 35116345 PMCID: PMC8799248 DOI: 10.21037/tcr-21-1582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Objective Protamine 1 (PRM1) is specific in sperm and plays essential roles in fertilization, also a member of cancer testis antigen (CTA) family. This study aims to summarize the expression and function of PRM1 in spermatogenesis, and to broaden the current knowledge and inspire future development of PRM1-based therapeutic strategies in cancer treatment and nanomedicine. Background The protamine proteins, are characterized by an arginine-rich core and cysteine residues. Humans express two types of protamine: PRM1 and PRM2. The abnormal expression or proportion of PRM1 and PRM2 is known to be associated with subfertility and infertility, especially for PRM1 which is highly evolutionary conserved in mammalians and expressed in all vertebrates. Biological functions of PRM1 have been unveiled in diverse cellular processes, such as tumorigenesis, somatic cell nucleus transfer, and drug delivery systems. Moreover, PRM1 is identified as a CTA in chronic leukemia (CLL) and colorectal cancer (CRC). Methods Literature was obtained using PubMed and the keywords protamine 1, PRM1, or P1, from January 1, 1980, through July 20, 2021. We also collect the additional evidence through screening references of articles identified through the PubMed searches. Conclusions PRM1 is well-studied in male infertility, and further researches and attempts to develop PRM1 as novel tumor marker, as well as drug delivery vector, will be of important clinical significance.
Collapse
Affiliation(s)
- Shengnan Ren
- Department of Breast, Thyroid, Hepatobiliary and Pancreatic Surgery, Xinmin Division of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuebo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaofeng Tian
- Department of Breast, Thyroid, Hepatobiliary and Pancreatic Surgery, Xinmin Division of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dingquan Yang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yongli Dong
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fangfang Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Finelli R, Moreira BP, Alves MG, Agarwal A. Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:77-113. [DOI: 10.1007/978-3-030-89340-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
15
|
Nagaki CAP, Hamilton TRDS, Assumpção MEODÁ. What is known so far about bull sperm protamination: a review. Anim Reprod 2022; 19:e20210109. [DOI: 10.1590/1984-3143-ar2021-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
16
|
Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol 2021; 17:521-533. [PMID: 34234312 DOI: 10.1038/s41574-021-00517-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and is associated with a substantially increased lifetime risk of comorbidities, including type 2 diabetes mellitus, psychiatric disorders and gynaecological cancers. Despite its high prevalence (~15%) and substantial economic burden, the aetiology of PCOS remains elusive. The genetic loci linked to PCOS so far account for only ~10% of its heritability, which is estimated at 70%. However, growing evidence suggests that altered epigenetic and developmental programming resulting from hormonal dysregulation of the maternal uterine environment contributes to the pathogenesis of PCOS. Male as well as female relatives of women with PCOS are also at an increased risk of developing PCOS-associated reproductive and metabolic disorders. Although PCOS phenotypes are highly heterogenous, hyperandrogenism is thought to be the principal driver of this condition. Current treatments for PCOS are suboptimal as they can only alleviate some of the symptoms; preventative and targeted treatments are sorely needed. This Review presents an overview of the current understanding of the aetiology of PCOS and focuses on the developmental origin and epigenetic inheritance of this syndrome.
Collapse
Affiliation(s)
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Chronic Prostatitis/Chronic Pelvic Pain Syndrome Leads to Impaired Semen Parameters, Increased Sperm DNA Fragmentation and Unfavorable Changes of Sperm Protamine mRNA Ratio. Int J Mol Sci 2021; 22:ijms22157854. [PMID: 34360620 PMCID: PMC8346101 DOI: 10.3390/ijms22157854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a frequent disease affecting men of every age and accounting for a great number of consultations at urology departments. Previous studies suggested a negative impact of CP/CPPS on fertility. As increasing attention has been attributed to additional aspects, such as sperm DNA integrity and sperm protein alterations, besides the WHO standard semen analysis when assessing male fertility, in this prospective study, we aimed to further characterize the fertility status in CP/CPPS patients with a focus on these parameters. METHODS Sperm DNA fragmentation measured by sperm chromatin structure assay (SCSA) and protamine 1 to protamine 2 mRNA ratio assessed by RT-qPCR were analyzed along with conventional ejaculate parameters and inflammatory markers in 41 CP/CPPS patients and 22 healthy volunteers. RESULTS We found significant differences between the groups concerning multiple conventional ejaculate parameters. A significant increase in sperm DNA fragmentation was shown in CP/CPPS patients with association to other sperm parameters. The majority of CP/CPPS patients exhibited protamine mRNA ratios out of the range of regular fertility. CONCLUSIONS This is a pioneering study with a strong practical orientation revealing that CP/CPPS leads to increased sperm DNA damage and changes in sperm protamine levels, emphasizing an unfavorable impact of CP/CPPS on fertility.
Collapse
|
18
|
Finelli R, Darbandi S, Pushparaj PN, Henkel R, Ko E, Agarwal A. In Silico Sperm Proteome Analysis to Investigate DNA Repair Mechanisms in Varicocele Patients. Front Endocrinol (Lausanne) 2021; 12:757592. [PMID: 34975746 PMCID: PMC8719329 DOI: 10.3389/fendo.2021.757592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Varicocele, a condition associated with increased oxidative stress, negatively affects sperm DNA integrity and reduces pregnancy rates. However, the molecular mechanisms related to DNA integrity, damage, and repair in varicocele patients remain unclear. This study aimed to determine the role of DNA repair molecular mechanisms in varicocele-related infertility by combining an in silico proteomics approach with wet-laboratory techniques. Proteomics results previously generated from varicocele patients (n=50) and fertile controls (n=10) attending our Andrology Center were reanalyzed using bioinformatics tools, including the WEB-based Gene SeT AnaLysis Toolkit, Open Target Platform, and Ingenuity Pathway Analysis (IPA), to identify differentially expressed proteins (DEPs) involved in DNA repair. Subsequently, selected DEPs in spermatozoa were validated using western blotting in varicocele (n = 13) and fertile control (n = 5) samples. We identified 99 DEPs mainly involved in male reproductive system disease (n=66) and male infertility (n=47). IPA analysis identified five proteins [fatty acid synthase (FASN), myeloperoxidase (MPO), mitochondrial aconitate hydratase (ACO2), nucleoporin 93 (NUP93), and 26S proteasome non-ATPase regulatory subunit 14 (PSMD14)] associated with DNA repair deficiency, which showed altered expression in varicocele (P <0.03). We validated ACO2 downregulation (fold change=0.37, change%=-62.7%, P=0.0001) and FASN overexpression (fold change = 4.04, change %= 303.7%, P = 0.014) in men with varicocele compared to controls. This study combined a unique in silico approach with an in vitro validation of the molecular mechanisms that may be responsible for varicocele-associated infertility. We identified ACO2 and FASN as possible proteins involved in DNA repair, whose altered expression may contribute to DNA damage in varicocele pathophysiology.
Collapse
Affiliation(s)
- Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Reading, United Kingdom
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, United States
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Ashok Agarwal,
| |
Collapse
|
19
|
Lettieri G, Marra F, Moriello C, Prisco M, Notari T, Trifuoggi M, Giarra A, Bosco L, Montano L, Piscopo M. Molecular Alterations in Spermatozoa of a Family Case Living in the Land of Fires. A First Look at Possible Transgenerational Effects of Pollutants. Int J Mol Sci 2020; 21:ijms21186710. [PMID: 32933216 PMCID: PMC7555199 DOI: 10.3390/ijms21186710] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
In our previous work, we reported alterations in protamines/histones ratio, in DNA binding of these proteins and their involvement in DNA oxidative damage in 84% of the young men living in the Land of Fires. In the present work, we extended our findings, evaluating any alterations in spermatozoa of a family case, a father and son, living in this area, to also give a first look at the possibility of transgenerational inherited effects of environmental contaminants on the molecular alterations of sperm nuclear basic proteins (SNBP), DNA and semen parameters. In the father and son, we found a diverse excess of copper and chromium in the semen, different alterations in SNBP content and low DNA binding affinity of these proteins. In addition, DNA damage, in the presence of CuCl2 and H2O2, increased by adding both the father and son SNBP. Interestingly, son SNBP, unlike his father, showed an unstable DNA binding and were able to produce DNA damage even without external addition of CuCl2, in line with a lower seminal antioxidant activity than the father. The peculiarity of some characteristics of son semen could be a basis for possible future studies on transgenerational effects of pollutants on fertility.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (F.M.); (C.M.); (M.P.)
| | - Federica Marra
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (F.M.); (C.M.); (M.P.)
| | - Claudia Moriello
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (F.M.); (C.M.); (M.P.)
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (F.M.); (C.M.); (M.P.)
| | - Tiziana Notari
- Check Up—Day Surgery, Polydiagnostic and Research Centre, Reproductive Medicine Unit, 84131 Salerno, Italy;
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (M.T.); (A.G.)
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (M.T.); (A.G.)
| | - Liana Bosco
- Department of Biological, Chemistry and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze Ed.16, 90128 Palermo, Italy;
| | - Luigi Montano
- Andrology Unit of the “S. Francesco d’Assisi” Hospital, Local Health Authority (ASL) Salerno, EcoFoodFertility Project Coordination Unit, 84020 Oliveto Citra, Italy
- Correspondence: (L.M.); (M.P.); Tel.: +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (F.M.); (C.M.); (M.P.)
- Correspondence: (L.M.); (M.P.); Tel.: +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| |
Collapse
|
20
|
Ukogu OA, Smith AD, Devenica LM, Bediako H, McMillan RB, Ma Y, Balaji A, Schwab RD, Anwar S, Dasgupta M, Carter AR. Protamine loops DNA in multiple steps. Nucleic Acids Res 2020; 48:6108-6119. [PMID: 32392345 PMCID: PMC7293030 DOI: 10.1093/nar/gkaa365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops—c-shapes or s-shapes—that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.
Collapse
Affiliation(s)
- Obinna A Ukogu
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Adam D Smith
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ryan B McMillan
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Yuxing Ma
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ashwin Balaji
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Robert D Schwab
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Shahzad Anwar
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | | | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| |
Collapse
|
21
|
Mohammadi Z, Tavalaee M, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Could high DNA stainability (HDS) be a valuable indicator of sperm nuclear integrity? Basic Clin Androl 2020; 30:12. [PMID: 32817794 PMCID: PMC7425160 DOI: 10.1186/s12610-020-00110-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background The Sperm Chromatin Structure Assay (SCSA®), in addition to identifying the DNA Fragmentation Index (DFI) also identifies High DNA satiability (HDS), supposed to reflect the nuclear compaction of spermatozoa. However, data on what exactly this parameter reveals, its relevance and usefulness are contradictory. In order to shed light on this situation, spermatozoa of a cohort (N = 397) of infertile men were subjected to the SCSA®, TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling) and CMA3 (Chromomycin A3) tests. In a smaller subcohort (N = 100), aniline blue (AB) and toluidine blue (TB) staining were performed in addition. The objective of this study was thus to answer the question of whether HDS is a relevant and reliable parameter to be taken into account? Results HDS does not appear to be a reliable indicator of nuclear immaturity because it shows a weak correlation with the CMA3, AB and TB stains. The low correlation of HDS with sperm DNA fragmentation (TUNEL and SCSA®) and DNA condensation (CMA3, AB and TB) tests suggests that these two parameters could be decoupled. Unlike DFI and TUNEL, HDS has not been shown to correlate with classic clinical situations of male infertility (asthenozoospermia, teratozoospermia or astheno-teratozoospermia). Conclusion HDS correlates poorly with most tests that focus specifically on the level of maturity of the sperm nucleus. To our knowledge, this study is the first to compare SCSA®, TUNEL, AB, TB and CMA3 assays on identical samples. It shows the potency, consistency and limitations of each test and the care that must be taken in their interpretation.
Collapse
Affiliation(s)
- Z Mohammadi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - P Gharagozloo
- CellOxess LLC, 830 Bear Tavern Road, Ewing, NJ 08628 USA
| | - J R Drevet
- GReD Institute, Faculty of Medicine, INSERM-CNRS-Université Clermont Auvergne, Clermont-Ferrand, France
| | - M H Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
22
|
Torres-Flores U, Hernández-Hernández A. The Interplay Between Replacement and Retention of Histones in the Sperm Genome. Front Genet 2020; 11:780. [PMID: 32765595 PMCID: PMC7378789 DOI: 10.3389/fgene.2020.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
The genome of eukaryotes is highly organized within the cell nucleus, this organization per se elicits gene regulation and favors other mechanisms like cell memory throughout histones and their post-translational modifications. In highly specialized cells, like sperm, the genome is mostly organized by protamines, yet a significant portion of it remains organized by histones. This protamine-histone-DNA organization, known as sperm epigenome, is established during spermiogenesis. Specific histones and their post-translational modifications are retained at specific genomic sites and during embryo development these sites recapitulate their histone profile that harbored in the sperm nucleus. It is known that histones are the conduit of epigenetic memory from cell to cell, hence histones in the sperm epigenome may have a role in transmitting epigenetic memory from the sperm to the embryo. However, the exact function and mechanism of histone retention remains elusive. During spermatogenesis, most of the histones that organize the genome are replaced by protamines and their retention at specific regions may be deeply intertwined with the eviction and replacement mechanism. In this review we will cover some relevant aspects of histone replacement that in turn may help us to contextualize histone retention. In the end, we focus on the architectonical protein CTCF that is, so far, the only factor that has been directly linked to the histone retention process.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
23
|
Raei Sadigh A, Darabi M, Salmassi A, Hamdi K, Farzadi L, Ghasemzadeh A, Fattahi A, Nouri M. Fractalkine and apoptotic/anti-apoptotic markers in granulosa cells of women with polycystic ovarian syndrome. Mol Biol Rep 2020; 47:3593-3603. [PMID: 32350744 DOI: 10.1007/s11033-020-05452-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
Abstract
Owing to the role of fractalkine in regulating cellular apoptosis/proliferation, we investigated fractalkine effects on apoptosis/proliferation signaling of granulosa cells in polycystic ovarian syndrome (PCOS) patients through in vitro and in vivo experiments. In vivo, granulosa cells were collected from 40 women undergoing oocyte retrieval (20 controls and 20 PCOS). The expression levels of fractalkine, BAX, Bcl2, Bcl2-XL, Bad, and TNF-α were assessed using RT-PCR. In vitro, we determined the effect of different doses of fractalkine on the expression of the above mentioned genes in GCs of both groups. We found that the expression levels of fractalkine and Bcl-2 were significantly lower in the GCs of PCOS patients compared to the control group (p < 0.05). In contrast, the expression levels of TNF-α and BAX were higher in the patient's group than in the control group. The results suggested that expression levels of fractalkine were negatively and positively correlated with the number of oocytes and fertilized oocytes respectively. Moreover, fractalkine could dose-dependently increase fractalkine and decrease BAD, BAX, Bcl-xl, and TNF-α expressions in the control GCs. In contrast, GCs collected from PCOS patients revealed an increase in expression of BAD, BAX, and Bcl-xl following fractalkine treatment. Our findings indicated that insufficient expression of fractalkine in PCOS patients is related with elevated apoptotic and inflammatory markers and reduced anti-apoptotic genes in the GCs.
Collapse
Affiliation(s)
- Aydin Raei Sadigh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Salmassi
- Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliye Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Powell CD, Kirchoff DC, DeRouchey JE, Moseley HNB. Entropy based analysis of vertebrate sperm protamines sequences: evidence of potential dityrosine and cysteine-tyrosine cross-linking in sperm protamines. BMC Genomics 2020; 21:277. [PMID: 32245406 PMCID: PMC7126135 DOI: 10.1186/s12864-020-6681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spermatogenesis is the process by which germ cells develop into spermatozoa in the testis. Sperm protamines are small, arginine-rich nuclear proteins which replace somatic histones during spermatogenesis, allowing a hypercondensed DNA state that leads to a smaller nucleus and facilitating sperm head formation. In eutherian mammals, the protamine-DNA complex is achieved through a combination of intra- and intermolecular cysteine cross-linking and possibly histidine-cysteine zinc ion binding. Most metatherian sperm protamines lack cysteine but perform the same function. This lack of dicysteine cross-linking has made the mechanism behind metatherian protamines folding unclear. RESULTS Protamine sequences from UniProt's databases were pulled down and sorted into homologous groups. Multiple sequence alignments were then generated and a gap weighted relative entropy score calculated for each position. For the eutherian alignments, the cysteine containing positions were the most highly conserved. For the metatherian alignment, the tyrosine containing positions were the most highly conserved and corresponded to the cysteine positions in the eutherian alignment. CONCLUSIONS High conservation indicates likely functionally/structurally important residues at these positions in the metatherian protamines and the correspondence with cysteine positions within the eutherian alignment implies a similarity in function. One possible explanation is that the metatherian protamine structure relies upon dityrosine cross-linking between these highly conserved tyrosines. Also, the human protamine P1 sequence has a tyrosine substitution in a position expecting eutherian dicysteine cross-linking. Similarly, some members of the metatherian Planigales genus contain cysteine substitutions in positions expecting plausible metatherian dityrosine cross-linking. Rare cysteine-tyrosine cross-linking could explain both observations.
Collapse
Affiliation(s)
- Christian D. Powell
- Department of Chemistry, University of Kentucky, 161 Jacobs Science Building, Lexington, 40506 USA
- Markey Cancer Center, University of Kentucky, 800 Rose Street, Pavilion CC, Lexington, 40536 USA
| | - Daniel C. Kirchoff
- Department of Chemistry, University of Kentucky, 161 Jacobs Science Building, Lexington, 40506 USA
| | - Jason E. DeRouchey
- Department of Chemistry, University of Kentucky, 161 Jacobs Science Building, Lexington, 40506 USA
| | - Hunter N. B. Moseley
- Markey Cancer Center, University of Kentucky, 800 Rose Street, Pavilion CC, Lexington, 40536 USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, 40508 USA
- Institute for Biomedical Informatics, University of Kentucky, Lexington, 40536 USA
| |
Collapse
|
25
|
Pardede BP, Agil M, Supriatna I. Protamine and other proteins in sperm and seminal plasma as molecular markers of bull fertility. Vet World 2020; 13:556-562. [PMID: 32367964 PMCID: PMC7183474 DOI: 10.14202/vetworld.2020.556-562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fertility is the most important aspect in the efforts to increase livestock populations. Protamine and various proteins in sperm and seminal plasma are the results of the molecular analysis which can be used as a marker of fertility. Each of the proteins plays an important role in the normal function of sperm, starting from the formation of sperm structure, motility, capacitation, cell protection, acrosome reactions, successful fertilization, egg activation, and embryonic development. Finally, these molecular components can be a marker of fertility and can help to diagnose the cases of infertility/subfertility in livestock in the field.
Collapse
Affiliation(s)
- Berlin Pandapotan Pardede
- Reproductive Biology Study Program, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Muhammad Agil
- Department of Veterinary Clinic, Reproduction and Pathology, Division of Reproduction and Obstetric, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Iman Supriatna
- Department of Veterinary Clinic, Reproduction and Pathology, Division of Reproduction and Obstetric, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
26
|
Abstract
Sperm DNA fragmentation is referred to as one of the main causes of male infertility. Failures in the protamination process, apoptosis and action of reactive oxygen species (ROS) are considered the most important causes of DNA fragmentation. Action of ROS or changes in sperm protamination would increase the susceptibility of sperm DNA to fragmentation. Routine semen analysis is unable to estimate sperm chromatin damage. Sperm DNA integrity influences sperm functional capability, therefore tests that measure sperm DNA fragmentation are important to assess fertility disorders. Actually, there is a considerable number of methods for assessing sperm DNA fragmentation and chromatin integrity, sperm chromatin stability assay (SCSA modified), sperm chromatin dispersion (SCD), comet assay, transferase dUTP nick end labelling (TUNEL); and protamine evaluation in sperm chromatin assay, such as toluidine blue, CMA3, protamine expression and evaluation of cysteine radicals. This review aims to describe the main causes of sperm DNA fragmentation and the tests commonly used to evaluate sperm DNA fragmentation.
Collapse
|
27
|
Tesarik J. Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA of human spermatozoa can be subject to various kinds of modifications acquired throughout life. Put simply, two basic types of acquired sperm DNA modifications can be distinguished: genetic and epigenetic. Genetic modifications cause alterations of the DNA sequence and mainly result from the formation of breakpoints leading to sperm DNA fragmentation. Epigenetic modifications include a vast spectrum of events that influence the expression of different genes without altering their DNA sequence. Both the genetic and the epigenetic modifications of sperm DNA can negatively influence embryonic development, cause miscarriages, and be the origin of different health problems for the offspring. As to sperm DNA fragmentation, reliable diagnostic methods are currently available. On the other hand, the detection of potentially harmful epigenetic modifications in spermatozoa is a much more complicated issue. Different treatment options can be chosen to solve problems associated with sperm DNA fragmentation. Some are relatively simple and noninvasive, based on oral treatments with antioxidants and other agents, depending on the underlying cause. In other cases, the recourse to different micromanipulation-assisted in vitro fertilisation techniques is necessary to select spermatozoa with minimal DNA damage to be injected into oocytes. The treatment of cases with epigenetic DNA modifications is still under investigation. Preliminary data suggest that some of the techniques used in cases of extensive DNA fragmentation can also be of help in those of epigenetic modifications; however, further progress will depend on the availability of more reliable diagnostic methods with which it will be possible to evaluate the effects of different therapeutic interventions.
Collapse
|
28
|
Akmal M, Gholib G, Rinidar R, Fitriani F, Helmi TZ, Sugito S, Isa M, Nurliana N, Wahyuni S, Dasrul D, Yaman MA. The concentration of testosterone, pituitary adenylate cyclase-activating polypeptide, and protamine 1 in the serum of male chicken following administration of epididymis and testicular extracts and their combination. Vet World 2019; 12:1101-1107. [PMID: 31528039 PMCID: PMC6702581 DOI: 10.14202/vetworld.2019.1101-1107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023] Open
Abstract
Bakcground and Aim Testis and epididymis are male reproductive organs that play an important role in spermatogenesis. These two organs are rich in the content of hormones and other molecules needed in the process of spermatogenesis which affect the quality of the spermatozoa. The objective of this study was to examine the effect of the administration of epididymis and testicular extracts and their combination on testosterone, pituitary adenylate cyclase-activating polypeptide (PACAP), and protamine 1 (PRM1) concentrations in the serum of male chicken. Materials and Methods Twenty male chickens (broiler strain Cp707), aged 3 weeks and weighing 800-1000 g, were randomly divided into four different groups including a control group (T0) = injected with 1 ml normal saline and treatment groups: T1 = injected with 1 ml epididymis extract, T2 = injected with 1 ml testicular extract, and T3 = injected with a combination of 1 ml epididymis + 1 ml testicular extract. The experiment was conducted for 13 days and at the end of the study (day 14), the chickens were sacrificed to obtain the serum. Furthermore, the concentrations of testosterone, PACAP, and PRM1 were then measured by using an enzyme-linked immunosorbent assay technique. Results The concentrations of PACAP and PRM1 did not show a significant difference between treatment groups (T1, T2, and T3) and control group (T0) (p>0.05). However, the concentration of testosterone showed a significantly higher difference in a group injected with a combination of 1 ml epididymis and 1 ml testicular extracts (T3) compared to the control group (T0) (p<0.05). Conclusion The administration of epididymis and testicular extracts and their combination did not affect the increase of PACAP and PRM1 concentration. However, a combination of these extracts significantly affects the increase of testosterone concentration in the serum of male chicken.
Collapse
Affiliation(s)
- Muslim Akmal
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Rinidar Rinidar
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Fitriani Fitriani
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - T Zahrial Helmi
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Sugito Sugito
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - M Isa
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Nurliana Nurliana
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Sri Wahyuni
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Dasrul Dasrul
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - M Aman Yaman
- Field Laboratory of Animal Sciences, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
29
|
Abstract
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Collapse
|
30
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
31
|
Pourmasumi S, Nazari A, Fagheirelahee N, Sabeti P. Cytochemical tests to investigate sperm DNA damage: Assessment and review. J Family Med Prim Care 2019; 8:1533-1539. [PMID: 31198709 PMCID: PMC6559112 DOI: 10.4103/jfmpc.jfmpc_35_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Male factor infertility has been diagnosed as the cause of infertility in about 20% of infertile couples. Sperm analysis is the most common method for diagnosing infertility in a laboratory. However, approximately 15% of infertile men have a normal sperm analysis. Therefore, the result of a routine sperm analysis often cannot be a definitive diagnosis for male factor infertility. Also, approximately 8% of infertile men with normal sperm parameters have high levels of abnormal sperm DNA. This indicates the role of the integrity of sperm DNA in male infertility. Here, we review the current tests available to evaluate the sperm DNA integrity along with their benefits and limitations.
Collapse
Affiliation(s)
- Soheila Pourmasumi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Parvin Sabeti
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|