1
|
Kitahara CM, Schneider AB. Epidemiology of Thyroid Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:1284-1297. [PMID: 35775227 PMCID: PMC9473679 DOI: 10.1158/1055-9965.epi-21-1440] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Arthur B Schneider
- University of Illinois at Chicago, College of Medicine, Department of Medicine, Chicago, Illinois
| |
Collapse
|
2
|
Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis 2020; 35:221-231. [PMID: 31605533 PMCID: PMC7352099 DOI: 10.1093/mutage/gez027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Sarquis M, Moraes DC, Bastos-Rodrigues L, Azevedo PG, Ramos AV, Reis FV, Dande PV, Paim I, Friedman E, De Marco L. Germline Mutations in Familial Papillary Thyroid Cancer. Endocr Pathol 2020; 31:14-20. [PMID: 32034658 DOI: 10.1007/s12022-020-09607-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thyroid cancer, predominantly of papillary histology (PTC), is a common cancer mostly diagnosed sporadically. Hereditary PTC is encountered in ~ 5% of cases and may present at an earlier age, with greater risks of metastasis and recurrence, compared with sporadic cases. The molecular basis of hereditary PTC is unknown in most cases. In this study, the genetic basis of hereditary PTC in three Brazilian families was investigated. Whole exome sequencing (WES) was carried out for probands in each family, and validated, pathogenic/likely pathogenic sequence variants (P/LPSVs) were genotyped in additional family members to establish their putative pathogenic role. Overall, seven P/LPSVs in seven novel genes were detected: p.D283N*ANXA3, p.Y157S*NTN4, p.G172W*SERPINA1, p.G188S*FKBP10, p.R937C*PLEKHG5, p.L32Q*P2RX5, and p.Q76*SAPCD1. These results indicate that these novel genes are seemingly associated with hereditary PTC, but extension and validation in other PTC families are required.
Collapse
Affiliation(s)
- Marta Sarquis
- Department of Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debora C Moraes
- Department of Surgery, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Bastos-Rodrigues
- Department of Nutrition, Faculdade de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro G Azevedo
- Department of Surgery, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabiana Versiani Reis
- Department of Surgery, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula V Dande
- Department of Surgery, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Paim
- Department of Surgery, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eitan Friedman
- The Suzanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luiz De Marco
- Department of Surgery, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Rediscovering the value of families for psychiatric genetics research. Mol Psychiatry 2019; 24:523-535. [PMID: 29955165 PMCID: PMC7028329 DOI: 10.1038/s41380-018-0073-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023]
Abstract
As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the "Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders" consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.
Collapse
|
5
|
Dudbridge F, Brown SJ, Ward L, Wilson SG, Walsh JP. How many cases of disease in a pedigree imply familial disease? Ann Hum Genet 2017; 82:109-113. [PMID: 29058319 PMCID: PMC5813157 DOI: 10.1111/ahg.12222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
The ability to perform whole-exome and, increasingly, whole-genome sequencing on large numbers of individuals has led to increased efforts to identify rare genetic variants that affect the risk of both common and rare diseases. In such applications, it is important to identify families that are segregating the rare variants of interest. For rare diseases or rare familial forms of common diseases, pedigrees with multiple affected members are clearly harbouring risk variants. For more common diseases, however, it may be unclear whether a family with a few affected members is segregating a familial disease, is the result of multiple sporadic cases, or is a mixture of familial cases and phenocopies. We provide calculations for the probability that a family is harbouring familial disease, presented in general terms that admit working guidelines for selecting families for current sequencing studies. Using examples motivated by our own studies of thyroid cancer and published studies of colorectal cancer, we show that for common diseases, families with exactly two affected first-degree relatives have only a moderate probability of segregating familial disease, but this probability is higher for families with three or more affected relatives, and those families should therefore be prioritised in sequencing studies.
Collapse
Affiliation(s)
- Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Lynley Ward
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| |
Collapse
|