1
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
2
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
3
|
Assogna M, Casula EP, Borghi I, Bonnì S, Samà D, Motta C, Di Lorenzo F, D'Acunto A, Porrazzini F, Minei M, Caltagirone C, Martorana A, Koch G. Effects of Palmitoylethanolamide Combined with Luteoline on Frontal Lobe Functions, High Frequency Oscillations, and GABAergic Transmission in Patients with Frontotemporal Dementia. J Alzheimers Dis 2021; 76:1297-1308. [PMID: 32623398 DOI: 10.3233/jad-200426] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a presenile neurodegenerative disease for which there is no effective pharmacological treatment. Recently, a link has been proposed between neuroinflammation and FTD. OBJECTIVE Here, we aim to investigate the effects of palmitoylethanolamide (PEA) combined with luteoline (PEA-LUT), an endocannabinoid with anti-inflammatory and neuroprotective effects, on behavior, cognition, and cortical activity in a sample of FTD patients. METHODS Seventeen patients with a diagnosis of probable FTD were enrolled. Cognitive and neurophysiological evaluations were performed at baseline and after 4 weeks of PEA-LUT 700 mg×2/day. Cognitive effects were assessed by Neuropsychiatric Inventory (NPI), Mini-Mental State Examination, Frontal Assessment Battery (FAB), Screening for Aphasia in Neurodegeneration, Activities of Daily Living-Instrumental Activities of Daily Living, and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating scale. To investigate in vivo neurophysiological effects of PEA-LUT, we used repetitive and paired-pulse transcranial magnetic stimulation (TMS) protocols assessing LTP-like cortical plasticity, short-interval intracortical inhibition, long-interval intracortical inhibition (LICI), and short-latency afferent inhibition. Moreover, we used TMS combined with EEG to evaluate the effects on frontal lobe cortical oscillatory activity. RESULTS Treatment with PEA-LUT was associated with an improvement in NPI and FAB scores. Neurophysiological evaluation showed a restoration of LICI, in particular at ISI 100 ms, suggesting a modulation of GABA(B) activity. TMS-EEG showed a remarkable increase of TMS-evoked frontal lobe activity and of high-frequency oscillations in the beta/gamma range. CONCLUSION PEA-LUT could reduce behavioral disturbances and improve frontal lobe functions in FTD patients through the modulation of cortical oscillatory activity and GABA(B)ergic transmission.
Collapse
Affiliation(s)
- Martina Assogna
- Santa Lucia Foundation, IRCCS, Rome, Italy.,Tor Vergata Policlinic, Rome, Italy
| | - Elias Paolo Casula
- Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Clinical and Movement Neurosciences, University College London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Giacomo Koch
- Santa Lucia Foundation, IRCCS, Rome, Italy.,eCampus University, Novedrate, Italy
| |
Collapse
|
4
|
Sirkis DW, Bonham LW, Yokoyama JS. The Role of Microglia in Inherited White-Matter Disorders and Connections to Frontotemporal Dementia. Appl Clin Genet 2021; 14:195-207. [PMID: 33833548 PMCID: PMC8020808 DOI: 10.2147/tacg.s245029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia play a critical but poorly understood role in promoting white-matter homeostasis. In this review, we leverage advances in human genetics and mouse models of leukodystrophies to delineate our current knowledge and identify outstanding questions regarding the impact of microglia on central nervous system white matter. We first focus on the role of pathogenic mutations in genes, such as TREM2, TYROBP, and CSF1R, that cause leukodystrophies in which the primary deficit is thought to originate in microglia. We next discuss recent advances in disorders such as adrenoleukodystrophy and Krabbe disease, in which microglia play an increasingly recognized role. We conclude by reviewing the roles of GRN and related genes, such as TMEM106B, PSAP, and SORT1, that affect microglial biology and associate with several types of disease, including multiple leukodystrophies as well as forms of frontotemporal dementia (FTD) presenting with white-matter abnormalities. Taken together, mouse and human data support the notion that loss of microglia-facilitated white-matter homeostasis plays an important role in the development of leukodystrophies and suggest novel mechanisms contributing to FTD.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
5
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|
6
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
7
|
Targeted next-generation sequencing study in familial ALS-FTD Portuguese patients negative for C9orf72 HRE. J Neurol 2020; 267:3578-3592. [DOI: 10.1007/s00415-020-10042-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
|
8
|
Abstract
PURPOSE OF REVIEW Over the last year, research into the immunological and inflammatory signatures of frontotemporal lobar degeneration (FTLD) has accelerated greatly. Herein, we highlight recently proposed roles of brain-resident microglia as well as peripheral myeloid cells in frontotemporal dementia (FTD)-spectrum disorders. RECENT FINDINGS Recent unbiased genetic, transcriptomic, and proteomic surveys using human data confirm significantly altered immune-function genes as well as transcript and protein modules associated with inflammatory and immune function. Beyond human studies, novel animal models indicate important roles for both microglia and monocytes, and central involvement of genes such as Trem2, Apoe, and Tbk1. SUMMARY The importance of neuroinflammatory activity in FTD pathophysiology is unambiguous, but whether this activity is primarily beneficial or detrimental remains unclear, with variable results reported for distinct disease paradigms. Going forward, it will be crucial to determine which types of microglial and peripheral myeloid responses are favorable, in response to which specific proteinopathies, and at which point in disease course.
Collapse
|
9
|
Zhang B, Li R, Zhang Y, Gao X. Differential role of triggering receptors expressed on myeloid cells 2 R47H in 3 neurodegenerative diseases based on a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e18921. [PMID: 32000403 PMCID: PMC7004756 DOI: 10.1097/md.0000000000018921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent studies have suggested that the potential functional polymorphism R47H in triggering receptors expressed on myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases, however, the results remain inconclusive. This meta-analysis aimed to investigate the association between TREM2 R47H and the risk for 3 typical neurodegenerative diseases: Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS). METHODS A literature review was carried out using PubMed, Medline, and Embase. Data analysis was conducted using Stata 15.0 software. The pooled odds ratio (ORs) and 95% confidence interval (CIs) were calculated. RESULTS A total of 35 articles were identified as eligible: 22 on AD, 3 on ALS, 7 on PD, 2 on AD and ALS, and 1 on ALS and PD. The AD set included 23,092 cases and 30,920 controls, the ALS set included 7391 cases and 12,442 controls, and the PD set included 8498 patients and 9161 controls. We found that R47H was associated with an increased risk of AD in the total pooled population (P < .001, OR = 4.02, 95% CI = 3.15-5.13). However, this significant difference existed for Caucasian people (OR = 4.16, 95% CI = 3.24-5.33) but not for Asian or African people. Moreover, we did not find any significant differences in minor allele frequency distribution between the PD and control groups or between the ALS and control groups, not only for the total pooled population but also for the subgroups of different ethnicities. CONCLUSION Our study suggested that R47H in the TREM2 gene leads to an increased risk for developing AD, but not for ALS and PD, which adds evidence to the notion that diverse pathogenesis may be involved in different neurogenerative diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurology, the First Hospital of Yulin, Yulin, Shaanxi
| | - Rui Li
- Department of Neurology, the First Hospital of Yulin, Yulin, Shaanxi
| | - Yufan Zhang
- Department of Neurology, the First Hospital of Yulin, Yulin, Shaanxi
| | - Xia Gao
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| |
Collapse
|
10
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Abstract
Purpose of review In this review we highlight recent advances in the human genetics of frontotemporal dementia (FTD). In addition to providing a broad survey of genes implicated in FTD in the last several years, we also discuss variation in genes implicated in both hereditary leukodystrophies and risk for FTD (e.g., TREM2, TMEM106B, CSF1R, AARS2, NOTCH3). Recent findings Over the past five years, genetic variation in approximately 50 genes has been confirmed or suggested to cause or influence risk for FTD and FTD-spectrum disorders. We first give background and discuss recent findings related to C9ORF72, GRN and MAPT, the genes most commonly implicated in FTD. We then provide a broad overview of other FTD-associated genes and go on to discuss new findings in FTD genetics in East Asian populations, including pathogenic variation in CHCHD10, which may represent a frequent cause of disease in Chinese populations. Finally, we consider recent insights gleaned from genome-wide association and genetic pleiotropy studies. Summary Recent genetic discoveries highlight cellular pathways involving autophagy, the endolysosomal system and neuroinflammation, and reveal an intriguing overlap between genes that confer risk for leukodystrophy and FTD.
Collapse
|
12
|
Abstract
Microglia are a subset of tissue macrophages that constitute the major immune cell type of the central nervous system. These cells have long been known to change their morphology and functions in response to various neurological insults. Recently, a plethora of unbiased transcriptomics studies have revealed that across a broad spectrum of neurodegeneration-like disease models, microglia adopt a similar activation signature and perform similar functions. Despite these commonalities in response, the role of microglia has been described as both positive and negative in different murine disease models. In humans, genetic association studies have revealed strong connections between microglia genes and various neurodegenerative diseases, and mechanistic investigations of these mutations have added another layer of complexity. Here, we provide an overview of studies that have built a case for a common microglial response to neurodegeneration and discuss pathways that may be important to initiate and sustain this response; delineate the multifaceted functions of activated microglia spanning different diseases; and discuss insights from studying genes associated with disease in humans. We argue that strong evidence causally links activated microglia function to neurodegeneration and discuss what seems to be a conflict between mouse models and human genetics.
Collapse
Affiliation(s)
- Wilbur M Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|