1
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Shakeri F, Mohamadynejad P, Moghanibashi M. Identification of ASMTL-AS1 and LINC02604 lncRNAs as novel biomarkers for diagnosis of colorectal cancer. Int J Colorectal Dis 2024; 39:112. [PMID: 39028420 PMCID: PMC11271384 DOI: 10.1007/s00384-024-04692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Colorectal cancer is one of the major leading causes of death worldwide, and available treatments for advanced colorectal cancer are not successful. Therefore, early detection of colorectal cancer is essential to improve patient survival, and biomarkers are potential tools to achieve this goal. Considering the key role of lncRNAs in cancers, the aim of this study is to identify lncRNAs involved in colorectal cancer as new potential prognosis biomarkers for CRC. METHODS In this observational study, gene expression data obtained from the TCGA database were analyzed, Identification of differentially expressed mRNAs, miRNAs, and lncRNAs was performed, and ceRNA network was drawn. Also, survival analysis of patients was performed in order to identify potential biomarkers related to the diagnosis and prognosis of colon cancer. After confirming the results using the GSE39582 dataset, the expression of target lncRNAs in colorectal tumor tissues was also investigated to confirm the bioinformatic data. RESULTS Analysis of the TCGA data showed that the expression of three lncRNAs-SNHG7, ASMTL-AS1, and LINC02604-that had the highest interaction with other miRNAs and mRNAs identified based on the ceRNA network was increased in colorectal cancer. Also, based on the ceRNA network, three microRNAs, hsa-let-7d-5p, hsa-mir-92a-3p, and hsa-mir-423-5p, and eight mRNAs, including CPA4, MSI2, RRM2, IGF2BP1, ONECUT2, HMGA1, SOX4, and SRM, were associated with all three mentioned lncRNAs, the expression of microRNAs was decreased and the expression of mRNAs was increased. By enrichment analysis, it was found that the target lncRNAs are involved in the processes of cell proliferation, apoptosis, and metastasis, indicating their importance in the development and malignancy of colorectal cancer. Furthermore, Kaplan-Meier analysis showed a significant increase in mortality in patients with higher expression levels of these lncRNAs. Analysis of the GSE39582 dataset, and real-time RT-PCR analysis, confirmed our bioinformatic results. Also, ROC analysis showed that SNHG7 was a relatively good promising biomarker (AUC = 0.73, p value = 0.02), while ASMTL-AS1 (AUC = 0.92, p value < 0.0001) and LINC02604 (AUC = 1.00, p value < 0.0001) emerged as excellent diagnostic biomarkers in colorectal cancer. CONCLUSION It seems that increased expression of lncRNAs ASMTL-AS1 and LINC02604 can serve as molecular biomarkers for CRC, possibly through the sponge hsa-let-7d-5p, hsa-mir-92a-3p, and hsa-mir-423 5p, which increases target mRNAs, which are effective in the carcinogenesis process.
Collapse
Affiliation(s)
- Fariba Shakeri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
3
|
Elkhamisy FAA, Aboelkomsan EA, Foda AAM. Differences in Clinicopathological Features, P16Ink4a and P57KIP2 Immunohistochemical Expressions, and Survival Between Colorectal Carcinoma in Rectosigmoid and Other Colonic Locations. Cureus 2024; 16:e62061. [PMID: 38989391 PMCID: PMC11234920 DOI: 10.7759/cureus.62061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background One unique criterion of colorectal carcinoma (CRC) is the different locations within the colorectum. Different CRC sidedness/locations could have distinct criteria, including risk factors, morphological features, genetic alterations, prognostic factors, and clinical outcomes. Nearly half of the CRC cases occur in the rectal-sigmoid locations, while other colonic locations constitute the other half. Investigating specific protein expression patterns in the rectosigmoid CRC (rsCRC) compared to other colonic (ocCRC) locations helps understand the disease pathogenesis, predict prognosis, and design personalized treatments. This study is the first to compare P16Ink4a and P57KIP2 immunohistochemical (IHC) expression in rsCRC to ocCRC and examine their relationship to disease outcomes in both locations. Materials and methods A comparative cross-sectional study used tissue microarray slides from rsCRC and ocCRC that were immunohistochemically stained by anti-P16Ink4a and P57KIP2 antibodies. A semi-quantitative scoring system classified each marker's expression as positive or negative. The statistical analysis compared clinicopathological features, P16Ink4a and P57KIP2 expressions, and their relationship to clinical outcomes in rsCRC and ocCRC cases. Results One hundred fifty CRCs were distributed into the rsCRC cases (n=86, 57.3%) and the ocCRC cases (n=64, 42.7%). The rsCRC cases had a significantly lower age <40 years (P=0.002), higher frequency of mismatch repair (MMR) proficient status (P=0.003), and perineural invasion (P=0.008), with lower disease-free (DFS) and overall survival (OS) (P=0.03, and P=0.015, respectively). Significantly higher positive P16Ink4a and P57KIP2 IHC expressions were found in the rsCRCs compared to the ocCRCs (P=0.02, and P=0.03, respectively); however, their relationship to the hazards (HR) of recurrence (HR=4.02, P=0.058, and HR=0.36, P=0.14, respectively) and mortality (HR=2.56, P=0.21, and HR=0.23, P=0.58, respectively) in the rsCRC group was statistically nonsignificant. In the ocCRC group, P16Ink4a positivity was significantly associated with a higher disease recurrence and mortality hazard (HR=8.19, P=0.007, and HR=5.57, P=0.037, respectively), while P57KIP2 positivity was significantly associated with a lower mortality hazard (HR=0.12, P=0.027). Conclusion The rsCRCs differ from ocCRCs in clinicopathological criteria and protein expression patterns. Though P16Ink4a and P57KIP2 IHC expressions are higher in the rsCRC than in the ocCRC, their value as outcome predictors is higher in the ocCRCs rather than the rsCRCs. P16Ink4a and P57KIP2 can act as prognostic markers and be suitable targets for therapy modulation in the ocCRC group.
Collapse
Affiliation(s)
| | | | - Abd AlRahman M Foda
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Pathology Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, SAU
| |
Collapse
|
4
|
Sadi Khosroshahi N, Koulaeizadeh S, Abdi A, Akbarzadeh S, Hashemi Aghdam SM, Rajabi A, Safaralizadeh R. Upregulation of Long Noncoding RNA PCAT1 in Iranian Patients with Colorectal Cancer and Its Performance as a Potential Diagnostic Biomarker. Genet Test Mol Biomarkers 2024; 28:65-69. [PMID: 38416663 DOI: 10.1089/gtmb.2023.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) as critical molecules play an essential role in the development of cancers. In colorectal cancer (CRC), various lncRNAs are related to cell proliferation, apoptosis, migration, and invasion. LncRNA prostate cancer-associated transcript 1 (PCAT-1), as an oncogenic factor, is a diagnostic biomarker that regulates cell proliferation, migration, invasion, and apoptosis. Methods: This study evaluated the relationship between PCAT-1, CRC occurrence, and pathological features of Iranian patients. The studied samples included 100 colorectal tumor tissues and 100 adjacent healthy tissues of Iranian CRC patients. RNAs were extracted from cancerous and noncancerous tissues to synthesize complementary DNA. The expression level of PCAT-1 was assessed using the real-time PCR method, and the data analysis was assessed using SPSS software. Results: In this study, expression level of PCAT-1 in tumor tissue was significantly increased in Iranian patients, and pathological studies of the patients had no significant relationship with the PCAT-1 expression profile. Conclusion: Our results suggested that the high expression of PCAT-1 resulted in the occurrence of colorectal tumor tissues in Iranian patients, which can be considered a diagnostic biomarker in CRC.
Collapse
Affiliation(s)
- Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shabnam Koulaeizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
6
|
Alshahrani SH, Al-Hadeithi ZSM, Almalki SG, Malviya J, Hjazi A, Mustafa YF, Alawady AHR, Alsaalamy AH, Joshi SK, Alkhafaji AT. LncRNA-miRNA interaction is involved in colorectal cancer pathogenesis by modulating diverse signaling pathways. Pathol Res Pract 2023; 251:154898. [PMID: 37924797 DOI: 10.1016/j.prp.2023.154898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
LncRNAs function as molecular sponges for miRNAs to control their availability for targeting mRNA molecules. This procedure indirectly regulates the expression of cancer-related genes. Some lncRNAs also directly interact with miRNAs, leading to their degradation or sequestration, which can negatively impact gene expression. miRNAs, on the other hand, play a critical role in controlling the expression of genes, including oncogenes and tumor suppressor genes. Multiple types of cancer have been linked to the onset and progression of miRNA dysregulation. Even though there is a lot of potential for treating CRC by targeting the LncRNA-miRNA axis, several challenges remain to be overcome. The specificity of the targeting approach, delivery methods, resistance, safety, and cost-effectiveness are critical research areas that must be addressed to advance this field and improve treatment outcomes for people with CRC.
Collapse
Affiliation(s)
| | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hussien Radie Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - S K Joshi
- Mechanical Engineering Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | |
Collapse
|
7
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Sadykhov NK, Midiber KY, Konyukova AK, Kontorschikov AS, Maslenkina KS, Orekhov AN. Long Non-Coding RNAs in Colorectal Cancer: Navigating the Intersections of Immunity, Intercellular Communication, and Therapeutic Potential. Biomedicines 2023; 11:2411. [PMID: 37760852 PMCID: PMC10525929 DOI: 10.3390/biomedicines11092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This comprehensive review elucidates the intricate roles of long non-coding RNAs (lncRNAs) within the colorectal cancer (CRC) microenvironment, intersecting the domains of immunity, intercellular communication, and therapeutic potential. lncRNAs, which are significantly involved in the pathogenesis of CRC, immune evasion, and the treatment response to CRC, have crucial implications in inflammation and serve as promising candidates for novel therapeutic strategies and biomarkers. This review scrutinizes the interaction of lncRNAs with the Consensus Molecular Subtypes (CMSs) of CRC, their complex interplay with the tumor stroma affecting immunity and inflammation, and their conveyance via extracellular vesicles, particularly exosomes. Furthermore, we delve into the intricate relationship between lncRNAs and other non-coding RNAs, including microRNAs and circular RNAs, in mediating cell-to-cell communication within the CRC microenvironment. Lastly, we propose potential strategies to manipulate lncRNAs to enhance anti-tumor immunity, thereby underlining the significance of lncRNAs in devising innovative therapeutic interventions in CRC.
Collapse
Affiliation(s)
- Nikolay K. Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Arcady L. Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Nikolay K. Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Konstantin Y. Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexandra K. Konyukova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Andrey S. Kontorschikov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Ksenia S. Maslenkina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexander N. Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
8
|
Kan CM, Pei XM, Yeung MHY, Jin N, Ng SSM, Tsang HF, Cho WCS, Yim AKY, Yu ACS, Wong SCC. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int J Mol Sci 2023; 24:11026. [PMID: 37446204 DOI: 10.3390/ijms241311026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Circulating tumor RNA (ctRNA) has recently emerged as a novel and attractive liquid biomarker. CtRNA is capable of providing important information about the expression of a variety of target genes noninvasively, without the need for biopsies, through the use of circulating RNA sequencing. The overexpression of cancer-specific transcripts increases the tumor-derived RNA signal, which overcomes limitations due to low quantities of circulating tumor DNA (ctDNA). The purpose of this work is to present an up-to-date review of current knowledge regarding ctRNAs and their status as biomarkers to address the diagnosis, prognosis, prediction, and drug resistance of colorectal cancer. The final section of the article discusses the practical aspects involved in analyzing plasma ctRNA, including storage and isolation, detection technologies, and their limitations in clinical applications.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Nana Jin
- Codex Genetics Limited, Shatin, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | | | | | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
9
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Kerachian MA, Azghandi M. Identification of long non-coding RNA using single nucleotide epimutation analysis: a novel gene discovery approach. Cancer Cell Int 2022; 22:337. [PMID: 36333783 PMCID: PMC9636742 DOI: 10.1186/s12935-022-02752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms related to tumorigenesis by functioning as oncogenes or tumor-suppressors or even harboring oncogenic and tumor-suppressing effects; representing a new class of cancer biomarkers and therapeutic targets. It is predicted that more than 35,000 ncRNA especially lncRNA are positioned at the intergenic regions of the human genome. Emerging research indicates that one of the key pathways controlling lncRNA expression and tissue specificity is epigenetic regulation. METHODS In the current article, a novel approach for lncRNA discovery based on the intergenic position of most lncRNAs and a single CpG site methylation level representing epigenetic characteristics has been suggested. RESULTS Using this method, a novel antisense lncRNA named LINC02892 presenting three transcripts without the capacity of coding a protein was found exhibiting nuclear, cytoplasmic, and exosome distributions. CONCLUSION The current discovery strategy could be applied to identify novel non-coding RNAs influenced by methylation aberrations.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Two circPPFIA1s negatively regulate liver metastasis of colon cancer via miR-155-5p/CDX1 and HuR/RAB36. Mol Cancer 2022; 21:197. [PMID: 36224588 PMCID: PMC9555114 DOI: 10.1186/s12943-022-01667-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) play a critical role in colorectal cancer (CRC) progression, including metastasis. However, the detailed molecular mechanism is not fully understood. Methods Differentially expressed circRNAs between primary KM12C and liver metastatic KM12L4 colon cancer cells were identified by microarray. The expression of circRNAs was measured by semi-quantitative (semi-qPCR) and real time-quantitative PCR (RT-qPCR). Metastatic potential including invasive and migratory abilities, and liver metastasis were examined by transwell assays and intrasplenic injection, respectively. CircPPFIA1-associated microRNA (miRNA) and RNA-binding protein (RBP) were screened by an antisense oligonucleotide (ASO) pulldown experiment. The effects of circPPFIA1 on target gene expression were evaluated by RT-qPCR and western blot analyses. Results By analyzing circRNA microarray data, we identified two anti-metastatic circRNAs generated from PPFIA1 with different length, which named circPPFIA1-L (long) and -S (short). They were significantly downregulated in liver metastatic KM12L4 cells compared to primary KM12C cells. The knockdown of circPPFIA1s in KM12C enhanced metastatic potential and increased liver metastasis. Conversely, overexpression of circPPFIA1s weakened metastatic potential and inhibited liver metastasis. circPPFIA1s were found to function as sponges of oncogenic miR-155-5p and Hu antigen R (HuR) by an ASO pulldown experiment. circPPFIA1s upregulated tumor-suppressing CDX1 expression and conversely downregulated oncogenic RAB36 by decoying miR-155-5p and by sequestering HuR, respectively. Conclusion Our findings demonstrate that circPPFIA1s inhibit the liver metastasis of CRC via the miR-155-5p/CDX1 and HuR/RAB36 pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01667-w.
Collapse
|
12
|
lncRNA TRPM2-AS Promotes Colorectal Cancer Progression by Regulating miR-22-3p and FSTL1. JOURNAL OF ONCOLOGY 2022; 2022:1366511. [PMID: 36268275 PMCID: PMC9578789 DOI: 10.1155/2022/1366511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Background. In recent years, long noncoding RNAs (lncRNAs) relate to many biological processes, which affect the progression of tumors. Transient receptor potential melastatin 2 antisense RNA (TRPM2-AS) is reported to play an oncogene-like role in tumors. TRPM2-AS is highly expressed in colorectal cancer (CRC), but the mechanism of TRPM2-AS is still unclear. The regulatory mechanism of TRPM2-AS in the occurrence of CRC was explored, so as to find new markers and therapeutic targets for CRC. Methods. TRPM2-AS and miR-22-3p expression in CRC cells were measured through reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Then, TRPM2-AS knockdown cell lines were constructed, and cell counting kit-8 (CCK-8), clone formation, wound healing, and invasion assays were used to detect cell malignant behavior. Follistatin-like 1 (FSTL1) protein was detected by western blotting. The interaction between miR-22-3p and TRPM2-AS or FSTL1 was verified by the luciferase reporter and RNA immunoprecipitation (RIP) assay. Subcutaneous xenografts were performed using animal experiments. Results. TRPM2-AS expression in CRC cells was increased, and miR-22-3p expression was decreased in CRC cells. TRPM2-AS inhibition inhibited cell malignant behavior. miR-22-3p has a targeting relationship with TRPM2-AS and FSTL1. In cells, downregulation of TRPM2-AS expression promoted miR-22-3p and inhibited FSTL1 expression, while mimics inhibited FSTL1 expression. miR-22-3p inhibition or FSTL1 overexpression could offset the inhibition of TRPM2-AS downregulation on CRC cells. Conclusions. The TRPM2-AS/miR-22-3p/FSTL1 regulation axis could regulate CRC cell malignant behavior, which may provide a new perspective for interpreting the mechanism of CRC development.
Collapse
|
13
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
14
|
Wang O, Shi D, Li Y, Zhou X, Yan H, Yao Q. lncRNA pair as candidate diagnostic signature for colorectal cancer based on the within-sample relative expression levels. Front Oncol 2022; 12:912882. [PMID: 36059706 PMCID: PMC9428707 DOI: 10.3389/fonc.2022.912882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
Background Early diagnosis of colorectal cancer could significantly improve the prognosis and reduce mortality. However, indeterminate diagnosis is often met in pathology diagnosis in biopsy samples. Abnormal expression of long non-coding RNA (lncRNA) is associated with the initiation and progression of colorectal cancer. It is of great value and clinical significance to explore lncRNAs as candidate diagnostic biomarkers in colorectal cancer. Methods Based on the within-sample relative expression levels of lncRNA pairs, we identified a group of candidate diagnostic biomarkers for colorectal cancer. In addition, we validated it in independent datasets produced by different laboratories and different platforms. We also tested it in colorectal cancer tissue samples using quantitative real-time polymerase chain reaction (RT-qPCR). Results A biomarker consisting of six lncRNA pairs including nine lncRNAs was identified for the diagnosis of colorectal cancer. For a total of 950 cancer samples and 247 non-cancer samples, both of the sensitivity and specificity could achieve approximately 90%. For adenoma samples, the accuracy could achieve 73%. For normal tissues from inflammatory bowel disease patients, 93% (14/15) were correctly classified as non-cancer. Furthermore, the lncRNA pair biomarker showed excellent performance in all clinical stages; even in the early stage, the accuracy could achieve 87% and 82% in stage I and II. Meanwhile, the biomarker was also robust to the microsatellite instability status. More importantly, we measured the biomarker in 35 colorectal cancer and 30 cancer-adjacent tissue samples using quantitative real-time polymerase chain reaction (RT-qPCR). The accuracy could achieve 93.3% (70/75). Specially, even in early-stage tumors (I and II), the accuracy could also achieve 90.9% (30/33). The enrichment analysis revealed that these lncRNAs were involved in highly associated cancer pathways and immune-related pathways. Immune analysis showed that these marker lncRNAs were associated with multiple immune cells, implying that they might be involved in the regulation of immune cell functions in colorectal cancer. Most of the biomarker lncRNAs were also differentially expressed between the mutant group and wild-type group of colorectal cancer driver genes. Conclusion We identified and validated six lncRNA pairs including nine lncRNAs as a biomarker for assisting in the diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Ouxi Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Di Shi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- *Correspondence: Xiaoyan Zhou, ; Haidan Yan, ; Qianlan Yao,
| | - Haidan Yan
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- *Correspondence: Xiaoyan Zhou, ; Haidan Yan, ; Qianlan Yao,
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- *Correspondence: Xiaoyan Zhou, ; Haidan Yan, ; Qianlan Yao,
| |
Collapse
|
15
|
Snyder M, Iraola-Guzmán S, Saus E, Gabaldón T. Discovery and Validation of Clinically Relevant Long Non-Coding RNAs in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14163866. [PMID: 36010859 PMCID: PMC9405614 DOI: 10.3390/cancers14163866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recent efforts in biomedical research have focused on the identification of molecular biomarkers to improve the diagnosis, prognosis and eventually treatment of the most common human diseases worldwide, including cancer. In this context, a large number of studies point to a pivotal role of long non-coding RNAs (lncRNAs) in the pathophysiology of carcinogenesis, suggesting diagnostic or therapeutic potential. However, for most of them, supporting evidence is scarce and often based on a single large-scale analysis. Here, focusing on colorectal cancer (CRC), we present an overview of the main approaches for discovering and validating lncRNA candidate molecules, and provide a curated list of the most promising lncRNAs associated with this malignancy. Abstract Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with nearly two million newly diagnosed cases each year. The survival of patients with CRC greatly depends on the cancer stage at the time of diagnosis, with worse prognosis for more advanced cases. Consequently, considerable effort has been directed towards improving population screening programs for early diagnosis and identifying prognostic markers that can better inform treatment strategies. In recent years, long non-coding RNAs (lncRNAs) have been recognized as promising molecules, with diagnostic and prognostic potential in many cancers, including CRC. Although large-scale genome and transcriptome sequencing surveys have identified many lncRNAs that are altered in CRC, most of their roles in disease onset and progression remain poorly understood. Here, we critically review the variety of detection methods and types of supporting evidence for the involvement of lncRNAs in CRC. In addition, we provide a reference catalog that features the most clinically relevant lncRNAs in CRC. These lncRNAs were selected based on recent studies sorted by stringent criteria for both supporting experimental evidence and reproducibility.
Collapse
Affiliation(s)
- Madison Snyder
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Susana Iraola-Guzmán
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
16
|
Shaheen S, Alshammari E, Mokhtar S, Alshanwani A, Toraih E, Ibrahiem A, Fawzy M, Maher S. PUNISHER rs12318065 C>A transversion: a putative somatic driver mutation for poor prognosis in colon cancer. Biosci Rep 2022; 42:BSR20220465. [PMID: 35670784 PMCID: PMC9245078 DOI: 10.1042/bsr20220465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Colon cancer (CC) remains one of the leading causes of cancer death worldwide. Several mutations/polymorphisms have been implicated in CC development and/or progression. The role of the recently identified variants related to the long non-coding RNAs (lncRNAs) family has not yet been fully uncovered. In this sense, we aimed to explore the association between the lncRNA PUNISHER rs12318065 variant and the CC risk and/or prognosis. METHODS A total of 408 CC (paired 204 cancer/non-cancer) tissues were genotyped using the TaqMan allelic discrimination assay. RESULTS "A" variant was associated with higher susceptibility to develop CC under heterozygote (A/C vs. C/C: OR = 1.39, 95%CI = 1.09-2.17, P=0.002), homozygote (A/A vs. C/C: OR = 2.63, 95%CI = 1.51-4.58, P=0.001), dominant (A/C-A/A vs. C/C: OR = 1.72, 95%CI = 1.15-02.57, P=0.008), and recessive (A/A vs. C/C-A/C: OR = 2.23, 95%CI = 1.34-3.72, P=0.001) models. Patients with metastasis were more likely to harbor A/A and A/C genotypes (16.7% and 14.1%) than 11% with the C/C genotype (P=0.027). Patients harboring C>A somatic mutation were more likely to develop relapse (52.6% vs. 26.5%, P=0.003), have poor survival (57.9% vs. 27.7%, P=0.001), and have shorter disease-free survival (43.2 ± 2.6 months vs. 56.8 ± 1.29 months, P<0.001) and overall survival (49.6 ± 2.4 months vs. 56.6 ± 0.99 months, P<0.001). Multivariate Cox regression analysis showed that patients with distal metastasis and C>A somatic mutation were three times more likely to die. CONCLUSIONS To our knowledge, the present study is the first to identify that the PUNISHER rs12318065 variant could be a novel putative driver of colon cancer and is associated with poor prognosis.
Collapse
Affiliation(s)
- Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Sara H. Mokhtar
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliah R. Alshanwani
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, School of Medicine, New Orleans, Louisiana, U.S.A
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Shymaa Ahmed Maher
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Long Intergenic Noncoding RNA 00641 Promotes Growth and Invasion of Colorectal Cancer through Regulating miR-450b-5p/GOLPH3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8259135. [PMID: 35756081 PMCID: PMC9217543 DOI: 10.1155/2022/8259135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) have a vital function in tumor onset and progress. For instance, long intergenic noncoding RNA 00641 (LINC00641) has been linked to cancer modulation. Nonetheless, the precise biological roles of LINC00641 in colorectal cancer (CRC) remain elusive. Methods The expression levels of LINC00641 as well as the docking sites for LINC00641 and miR-450b-5p were analyzed using public data resources and web-based analytic tools. The putative downstream targets of miR-450b-5p were also predicted. Next, we evaluated the biological functions and the contents of LINC00641 in CRC both in vivo and in vitro. We next explored the influence of LINC00641 on the growth, migration, and infiltration of CRC cells via cell proliferation, migration, and invasion experiments. Besides, qRT-PCR, western blotting, flow cytometry, luciferase enzyme reporter assay, and in vivo tumorigenicity assays were conducted. Results Our results confirmed that LINC00641 was markedly upmodulated in CRC tissues and CRC cell lines, and the upmodulation was linked to poor survival. Notably, the proliferative and migratory abilities of HCT-116 and SW480 cells were significantly inhibited by the knockdown of LINC00641 both in vitro and in vivo, illustrating that LINC00641 exerted a tumor-promotion role in CRC. Mechanistically, LINC00641 could competitively bind miR-450b-5p, thereby expunging its inhibitory effect on GOLPH3 expression. Moreover, miR-450-5p and GOLPH3 were able to reverse LINC00641-mediated cellular processes. Conclusions Overall, the findings of this study suggest that LINC00641 promotes the proliferative and migratory abilities of CRC through sponging the miR-450b-5p/GOLPH3 axis.
Collapse
|
18
|
Teng D, Xia S, Hu S, Yan Y, Liu B, Yang Y, Du X. miR-887-3p Inhibits the Progression of Colorectal Cancer via Downregulating DNMT1 Expression and Regulating P53 Expression. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7179733. [PMID: 35795731 PMCID: PMC9252659 DOI: 10.1155/2022/7179733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide and the second leading cause of cancer-related deaths. Many researchers have reported that abnormal microRNAs (miRs) were expressed in CRC and participated in the occurrence and progression of CRC. However, there are few reports of miR-887-3p regulating CRC development. In the current study, we investigated the abnormal expression of miR-887-3p and also demonstrated its regulatory role and detailed molecular mechanism in CRC. Initially, miRNA expression data were obtained from TCGA-COAD that consisted of 453 CRC samples and 8 normal tissue samples. These were downloaded and analyzed to compare the expression level of miR-887-3p in CRC tissues to that in normal tissues. Moreover, 32 pairs of surgically resected CRC tumors and para-cancer tissues from our hospital were collected. Quantitative real-time PCR (qRT-PCR) was performed to detect miR-887-3p expression levels in CRC tissues, para-cancer tissues, several CRC cell lines, and an intestinal epithelial cell line. Following miR-887-3p mimic transfection in colon cancer SW480 cell line, the regulatory roles of miR-887-3p on cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were detected through CCK-8, flow cytometry, transwell assay, and Western blot. After potential targeting protein was predicted by bioinformatic websites, the luciferase reporter assay and Western blot were used to confirm the target of miR-887-3p. The targeting protein expressions were detected by Western blot and qRT-PCR. The relationship between miR-887-3p level and the effect of miR-887-3p on P53 expression was evaluated by Western blot and qRT-PCR. The effects of miR-887-3p on CRC cell growth in vivo by xenograft tumor experiments were investigated, and Ki-67 in tumor tissue was determined by immunohistochemistry. Results. The COAD data demonstrated that the expression levels of miR-887-3p in CRC clinical sample tissues and cell line cultures were remarkably lower than para-cancer normal tissues and NCM460 cells (normal colonic epithelial cell line). Functional experiments demonstrated that overexpression of miR-887-3p in SW480 cells significantly reduced proliferation, migration, invasion, and EMT, and promoted cancer cell apoptosis. Additionally, Western blot, qRT-PCR, and luciferase reporter assays confirmed that DNMT1 was a downstream target of miR-887-3p. Moreover, the blocking of DNMT1 by miR-887-3p mimics also promoted P53 expression. Finally, overexpression of DNMT1 in SW480 cells could partially reverse the regulatory effect of miR-887-3p mimics on CRC cell development. From in vivo experiments, overexpression of miR-887-3p could inhibit tumor growth in CRC xenograft mice and reduce the Ki-67 level. Conclusion. The microRNA miR-887-3p is a potential biomarker of CRC. It inhibited CRC cell proliferation, invasion, and EMT, and promoted cell apoptosis through targeting and downregulating DNMT1 and promoting P53 expression. Therefore, miR-887-3p may be a good biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Da Teng
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shaoyou Xia
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shidong Hu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Boyan Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Yang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
19
|
Shaalan AAM, Mokhtar SH, Ahmedah HT, Almars AI, Toraih EA, Ibrahiem AT, Fawzy MS, Salem MA. Prognostic Value of LINC-ROR (rs1942347) Variant in Patients with Colon Cancer Harboring BRAF Mutation: A Propensity Score-Matched Analysis. Biomolecules 2022; 12:biom12040569. [PMID: 35454158 PMCID: PMC9028515 DOI: 10.3390/biom12040569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging studies show that long intergenic non-protein coding RNA, regulator of reprogramming (LINC-ROR) is aberrantly expressed in several types of cancer, including colon cancer (CC). LINC-ROR intronic variant rs1942347 may impact gene regulation and disease phenotype. We aimed to explore the potential association of LINC-ROR (rs1942347) with the clinicopathological features and outcome of CC cases. Archived FFPE (n = 180) CC samples were enrolled. Taq-Man allelic discrimination PCR was used for genotyping in propensity-matched cohorts with/without positive staining for mutant BRAF protein after eliminating confounders bias. The rs1942347*A allele variant was associated with high pathological grade, larger tumor size, distant metastasis, and mortality. Multiple logistic regression analysis adjusted by sex and BRAF mutation showed A/A genotype carriers to have 3 times more risk of early onset of cancer (OR = 3.13, 95%CI = 1.28–7.69, p = 0.034) than T/T genotype carriers. Overall analysis showed that rs1942347*A allele carriers had higher risk of mortality under heterozygote (OR = 2.13, 95%CI = 1.08–4.35, p = 0.003), homozygote (OR = 5.0, 95%CI = 1.69–14.29, p = 0.003), dominant (OR = 3.33, 95%CI = 1.20–9.09, p = 0.003), and recessive (OR = 2.63, 95%CI = 1.37–5.0, p = 0.011) models compared to T/T allele carriers. Stratified analysis by BRAF status revealed that the ancestor T/T allele conferred protection in BRAF mutant CC patients and was associated with a 73–93% reduced risk of mortality under heterozygote/homozygote comparison models. Using Kaplan–Meier curves, carriers of the A/A genotype had shorter survival times than T/T cohorts. The univariate Cox regression model revealed that the A/A genotype was associated with a 3.5 times greater mortality risk than the T/T genotype. However, after adjustment by multiple Cox regression analysis, the risk was insignificant. In conclusion, this is the first study identifying the potential association of the LINC-ROR (rs1942347) variant with CC prognosis.
Collapse
Affiliation(s)
- Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sara H. Mokhtar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.M.); (A.I.A.)
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.M.); (A.I.A.)
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman A. Toraih
- Department of Surgery, Division of Endocrine and Oncologic Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.A.T.); (M.S.F.); Tel.: +1-346-907-4237 (E.A.T.); +20-1008584720 (M.S.F.)
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
- Correspondence: (E.A.T.); (M.S.F.); Tel.: +1-346-907-4237 (E.A.T.); +20-1008584720 (M.S.F.)
| | - Mai A. Salem
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
20
|
Talebi A, Rokni P, Kerachian MA. Transcriptome analysis of colorectal cancer liver metastasis: The importance of long non-coding RNAs and fusion transcripts in the disease pathogenesis. Mol Cell Probes 2022; 63:101816. [DOI: 10.1016/j.mcp.2022.101816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
|
21
|
Iranmanesh H, Entezari M, Rejali L, Nazemalhosseini-Mojarad E, Maghsoudloo M, Aghdaei HA, Zali MR, Hushmandi K, Rabiee N, Makvandi P, Ashrafizadeh M, Hashemi M. The Association of Clinicopathological Characterizations of Colorectal Cancer with Membrane-Bound Mucins genes and LncRNAs. Pathol Res Pract 2022; 233:153883. [DOI: 10.1016/j.prp.2022.153883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
|
22
|
Golla U, Sesham K, Dallavalasa S, Manda NK, Unnam S, Sanapala AK, Nalla S, Kondam S, Kumar R. ABHD11-AS1: An Emerging Long Non-Coding RNA (lncRNA) with Clinical Significance in Human Malignancies. Noncoding RNA 2022; 8:ncrna8020021. [PMID: 35314614 PMCID: PMC8938790 DOI: 10.3390/ncrna8020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of lncRNAs has been linked to the development and progression of different cancers. One such lncRNA is ABHD11 antisense RNA 1 (ABHD11-AS1), which has recently gained attention for its significant role in human malignancies. ABHD11-AS1 is highly expressed in gastric, lung, breast, colorectal, thyroid, pancreas, ovary, endometrium, cervix, and bladder cancers. Several reports highlighted the clinical significance of ABHD11-AS1 in prognosis, diagnosis, prediction of cancer progression stage, and treatment response. Significantly, the levels of ABHD11-AS1 in gastric juice had been exhibited as a clinical biomarker for the assessment of gastric cancer, while its serum levels have prognostic potential in thyroid cancers. The ABHD11-AS1 has been reported to exert oncogenic effects by sponging different microRNAs (miRNAs), altering signaling pathways such as PI3K/Akt, epigenetic mechanisms, and N6-methyladenosine (m6A) RNA modification. In contrast, the mouse homolog of AHD11-AS1 (Abhd11os) overexpression had exhibited neuroprotective effects against mutant huntingtin-induced toxicity. Considering the emerging research reports, the authors attempted in this first review on ABHD11-AS1 to summarize and highlight its oncogenic potential and clinical significance in different human cancers. Lastly, we underlined the necessity for future mechanistic studies to unravel the role of ABHD11-AS1 in tumor development, prognosis, progression, and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| | - Kishore Sesham
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri 522503, India;
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Mysuru 570015, India;
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Sambamoorthy Unnam
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Arun Kumar Sanapala
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Sharada Nalla
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Susmitha Kondam
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Rajesh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| |
Collapse
|
23
|
Shi Z, Huang K, Li Z, Niu Y, Jiang L. Evaluating the expression of tumorigenic long noncoding RNAs in circulating exosomes isolated from non-small-cell lung cancer patients. Biomark Med 2022; 16:241-251. [PMID: 35209738 DOI: 10.2217/bmm-2021-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the correlation of long noncoding RNAs (lncRNAs) expression in circulating exosomes and the cancerous and noncancerous tissues in patients with non-small-cell lung carcinoma. Methods: The relative expression of the four lncRNAs including LUADT1, MALAT1, NEAT1 and MIAT between tumor tissue, adjacent noncancerous tissues and circulating exosomes were evaluated by quantitative reverse transcription PCR. Results & conclusion: The relative expression of the lncRNAs, including LUADT1, MALAT1 and NEAT1, was upregulated and MIAT was downregulated in tumor tissue compared with noncancerous tissue samples. The expression of lncRNAs in circulating exosomes was not significantly different from cancerous tissue. Our results indicate that the studied exosomal lncRNAs have a good potential to be further evaluated as prognostic/diagnostic biomarkers in patients with non-small-cell lung cancer.
Collapse
Affiliation(s)
- Zhenshan Shi
- Department of Oncology, People's Hospital of Bozhou, Bozhou, Anhui, 236800, PR China
| | - Kaicheng Huang
- Department of Geriatrics, Haikou People's Hospital, Haikou, Hainan, 570208, PR China
| | - Zheng Li
- Department of Second Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, 230000, PR China
| | - Yanli Niu
- Department of Operation Room, Xiangyang No 1 People's Hospital, Affiliated Hospital of Hubei University of Medicne, Xiangyang, Hube, 441000, PR China
| | - Lihao Jiang
- Department of Oncology, The People's Hospital of Dazu, Chongqing, Chongqing, 402360, PR China
| |
Collapse
|
24
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
25
|
Poursheikhani A, Abbaszadegan MR, Kerachian MA. Long non-coding RNA AC087388.1 as a novel biomarker in colorectal cancer. BMC Cancer 2022; 22:196. [PMID: 35193569 PMCID: PMC8862536 DOI: 10.1186/s12885-022-09282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Several investigations have reported diverse roles of long non-coding RNA (lncRNA) in biological processes, tumor development, and progression of colorectal cancer (CRC). In this study, we investigated the lncRNA AC087388.1 tumorigenic role in CRC cells. Methods The CRC tissues were collected at the Reza Radiotherapy and Oncology Center, Mashhad, Iran. The human SW-48 and HT-29 CRC cell lines were obtained from the national cell bank of Iran. The cells were cultured according to ATCC (the American Type Culture Collection) recommendations. Quantitative real-time PCR was applied to assess the RNA expression. ShRNA transfection was done to downregulate the target gene. MTT and apoptosis assays were conducted to evaluate cell proliferation and viability, respectively. Colony formation assay, wound healing assay, and invasion assay were applied to determine growth, motility, and invasion of the cells, respectively. ENCORI online tool was used as downstream enrichment analysis. Results Forty CRC patients were encompassed in this study. The results demonstrated that the lncRNA SLC16A1-AS1, AC087388.1, and ELFN1-AS1 were significantly overexpressed in the CRC tissues in comparison to their normal counterpart margins. All the lncRNAs have shown significant Area Under Curve (AUC) values in the patients. Downregulation of lncRNA AC087388.1 remarkably decreased the cell proliferation and viability of the CRC cells. In addition, the data demonstrated that the downregulation of lncRNA AC087388.1 significantly suppressed cell growth and colony formation capability in the cells. Also, downregulation of lncRNA AC087388.1 attenuated motility and invasion of CRC cells, and significantly decreased the expression of invasion genes. In-silico functional enrichment analysis indicated that the lncRNA AC087388.1 has contributed to crucial signaling pathways in tumorigenesis such as the p53 and Wnt signaling pathways, apoptosis, and cell cycle. Conclusions Altogether, we showed that lncRNA AC087388.1 has an oncogenic role in tumorigenesis of CRC, and it can be considered as a novel diagnostic and prognostic biomarker in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09282-0.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| |
Collapse
|
26
|
Chen Y, Yang L, Yin D, Feng X, Jie J, Yao D, Chen J. Role of Long Noncoding RNA Regulator of Reprogramming in Colon Cancer Progression via Epidermal Growth Factor Receptor Signaling. Technol Cancer Res Treat 2022; 21:15330338221114707. [PMID: 35946134 PMCID: PMC9373180 DOI: 10.1177/15330338221114707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Long intergenic noncoding RNA regulator of reprogramming
(linc-ROR) is a novel long noncoding RNA that exhibits significant effects on
cancer progression. This research presented that linc-ROR had a crucial part in
promoting biological characteristics associated with worse prognosis in colon
cancer. Method: Bioinformatics analysis was performed to predict
signaling pathways related to linc-ROR. In addition, western blot, quantitative
reverse transcription-polymerase chain reaction, RNA-pulldown, cell
proliferation assays, colony formation assays, wound healing assays, and
transwell assays were applied to detect the role and regulation of particular
molecules. Results: Our results showed that the knockdown of
linc-ROR reduced cell invasion, proliferative ability, and migration in colon
cancer. Further evaluation verified that downregulating linc-ROR inhibited the
activation of epidermal growth factor receptor (EGFR) signaling. In addition,
cbl-b, a kind of E3 ubiquitin ligase that increases the degradation of EGFR, was
found to be a potential linc-ROR target. Conclusions: Based on our
findings, it was presented that linc-ROR served a role as a tumor-promoting
factor via repressing the ubiquitination and degradation of EGFR signaling,
which indicated that it could be a possible prognostic marker and therapeutic
target for colon cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Yang
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dian Yin
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiu Feng
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Jie
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - DengFu Yao
- Research Center of Clinical Medicine, 74567The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - JianRong Chen
- Department of Oncology, 117932Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
27
|
Tan P, Xu M, Nie J, Qin J, Liu X, Sun H, Wang S, Pan Y. LncRNA <i>SNHG16</i> promotes colorectal cancer proliferation by regulating ABCB1 expression through sponging miR-214-3p. J Biomed Res 2022; 36:231-241. [PMID: 35965433 PMCID: PMC9376732 DOI: 10.7555/jbr.36.20220049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mounting evidence indicates that long non-coding RNAs (lncRNAs) have critical roles in colorectal cancer (CRC) progression, providing many potential diagnostic biomarkers, prognostic biomarkers, and treatment targets. Here, we sought to investigate the role and underlying regulatory mechanism of lncRNA small nucleolar RNA host gene 16 (SNHG16) in CRC. The expressions of SNHG16 in CRC were identified by RNA-sequencing and quantitative reverse transcription PCR. The functions of SNHG16 were explored by a series of in vitro and in vivo assays (colony formation assay, flow cytometry assay, and xenograft model). Bioinformatics analysis, RNA fluorescencein situ hybridization and luciferase reporter assay were used to investigate the regulatory mechanism of effects of SNHG16. SNHG16 was found to be significantly elevated in human CRC tissues and cell lines. Functional studies suggested that SNHG16 promoted CRC cell growth both in vitro and in vivo. Mechanistically, we identified that SNHG16 is expressed predominantly in the cytoplasm. SNHG16 could interact with miR-214-3p and up-regulated its target ABCB1. This study indicated that SNHG16 plays an oncogenic role in CRC, suggesting it could be a novel biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Pei Tan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211100, China
- Shukui Wang and Yuqin Pan, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu 210006, China. Tels: +86-25-52271000 and +86-25-52267034, E-mails:
and
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
- Shukui Wang and Yuqin Pan, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu 210006, China. Tels: +86-25-52271000 and +86-25-52267034, E-mails:
and
| |
Collapse
|
28
|
Ma C, Zhang X, Zhao X, Zhang N, Zhou S, Zhang Y, Li P. Predicting the Survival and Immune Landscape of Colorectal Cancer Patients Using an Immune-Related lncRNA Pair Model. Front Genet 2021; 12:690530. [PMID: 34552614 PMCID: PMC8451271 DOI: 10.3389/fgene.2021.690530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence has demonstrated that immune-related long non-coding ribonucleic acids (irlncRNAs) can be used as prognostic indicators of overall survival (OS) in patients with colorectal cancer (CRC). Our aim in this research, therefore, was to construct a risk model using irlncRNA pairs with no requirement for a specific expression level, in hope of reliably predicting the prognosis and immune landscape of CRC patients. Methods Clinical and transcriptome profiling data of CRC patients downloaded from the Cancer Genome Atlas (TCGA) database were analyzed to identify differentially expressed (DE) irlncRNAs. The irlncRNA pairs significantly correlated with the prognosis of patients were screened out by univariable Cox regression analysis and a prognostic model was constructed by Lasso and multivariate Cox regression analyses. A receiver operating characteristic (ROC) curve was then plotted, with the area under the curve calculated to confirm the reliability of the model. Based on the optimal cutoff value, CRC patients in the high- or low-risk groups were distinguished, laying the ground for evaluating the risk model from the following perspectives: survival, clinicopathological traits, tumor-infiltrating immune cells (TIICs), antitumor drug efficacy, kinase inhibitor efficacy, and molecules related to immune checkpoints. Results A prognostic model consisting of 15 irlncRNA pairs was constructed, which was found to have a high correlation with patient prognosis in a cohort from the TCGA (p < 0.001, HR = 1.089, 95% CI [1.067-1.112]). According to both univariate and multivariate Cox analyses, this model could be used as an independent prognostic indicator in the TCGA cohort (p < 0.001). Effective differentiation between high- and low-risk patients was also accomplished, on the basis of aggressive clinicopathological characteristics, sensitivity to antitumor drugs, and kinase inhibitors, the tumor immune infiltration status, and the expression levels of specific molecules related to immune checkpoints. Conclusion The prognostic model established with irlncRNA pairs is a promising indicator for prognosis prediction in CRC patients.
Collapse
Affiliation(s)
- Chao Ma
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xudong Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nan Zhang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Sixin Zhou
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peiyu Li
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
29
|
Zhou B, Zhou Y, Liu Y, Zhang H, Mao H, Peng M, Xu A, Li Z, Wang H, Tan H, Ren H, Zhou X, Long Y. Association of CASC18/miR-20a-3p/TGFB2 ceRNA axis with occult lymph node metastasis in tongue squamous cell carcinoma. Mol Med 2021; 27:85. [PMID: 34362313 PMCID: PMC8349069 DOI: 10.1186/s10020-021-00345-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) ranks as the most prevalent malignancy in the oral cavity. TSCC patients with occult lymph node metastasis (OLNM) are thought to be at risk of worse outcome. However, regulatory mechanisms underlying OLNM remain less investigated. Methods In the present study, CASC18/miR-20a-3p/TGFB2 axis was identified and evaluated by bioinformatic and qRT-PCR analyses. Effects of CASC18 knockdown on cell migration and invasion were determined by wound healing and transwell assays. Western blot, ELISA, RNA pulldown and luciferase reporter assays were performed for mechanism verification. Results CASC18 was identified up-regulating in TSCC tumours, and especially in those from patients with OLNM. Importantly, we found higher CASC18 expression was positively correlated with the presence of OLNM and worse outcome of TSCC patients. Furthermore, we demonstrated that CASC18 knockdown repressed cell migration and invasion through inhibiting epithelial-mesenchymal transition, which could be partly rescued by miR-20a-3p inhibitor. Regarding the molecular mechanism, we further confirmed that CASC18 functioned as a ceRNA to sponge miR-20a-3p to enhanceTGFB2 expression and secretion. Conclusion In conclusion, we have reported a novel CASC18/miR-20a-3p/TGFB2 ceRNA axis in OLNM of TSCC. Our findings will contribute to a deeper understanding of the molecular mechanism of OLNM in TSCC, and facilitate the development of diagnostic methods for assisting treatment decision-making. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00345-9.
Collapse
Affiliation(s)
- Bo Zhou
- Translational Medicine Centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yue Zhou
- Translational Medicine Centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Ying Liu
- Hunan Traditional Chinese Medical College, Zhuzhou, 412012, Hunan, People's Republic of China
| | - Hailin Zhang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Huangxing Mao
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- Translational Medicine Centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Anji Xu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zan Li
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Haolei Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Huayi Ren
- Translational Medicine Centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xiao Zhou
- Translational Medicine Centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China. .,Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China. .,Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
30
|
LncRNA AFAP1-AS1 Promotes the Progression of Colorectal Cancer through miR-195-5p and WISP1. JOURNAL OF ONCOLOGY 2021; 2021:6242798. [PMID: 34335760 PMCID: PMC8292080 DOI: 10.1155/2021/6242798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023]
Abstract
Objective Colorectal cancer (CRC) is the most common cancer. But, the molecular mechanisms of CRC progression are not fully understood. This study was conducted to explore how the long noncoding RNA actin filament-associated protein 1-antisense RNA1 (lncRNA AFAP1-AS1) participates in CRC progression through the regulation of microRNA-195-5p (miR-195-5p) and wingless-type inducible signaling pathway protein-1 (WISP1). Methods The expressions of AFAP1-AS1, miR-195-5p, and WISP1 were detected by RT-qPCR or western blot. A dual-luciferase assay confirmed the target relationship of AFAP1-AS1, miR-195-5p, and WISP1. Colony formation, wound-healing, and Transwell assays were used to detect the growth, migration, and invasion abilities of cells, respectively. Results AFAP1-AS1 and WISP1 expressions were notably increased, and miR-195-5p expression was markedly reduced in CRC. The dual-luciferase assay verified that AFAP1-AS1 could bind to miR-195-5p. AFAP1-AS1 knockdown could inhibit the malignant behavior of CRC cells. miR-195-5p could target and regulate WISP1 expression. Overexpression of WISP1 or miR-195-5p inhibition reversed the inhibition effect of AFAP1-AS1 knockdown on the biological activity of CRC cells. Conclusions AFAP1-AS1 knockdown may inhibit the proliferation, migration, and invasion of CRC cells through the miR-195-5p/WISP1 axis.
Collapse
|
31
|
Hennig EE, Kluska A, Piątkowska M, Kulecka M, Bałabas A, Zeber-Lubecka N, Goryca K, Ambrożkiewicz F, Karczmarski J, Olesiński T, Zyskowski Ł, Ostrowski J. GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility. BIOLOGY 2021; 10:biology10060465. [PMID: 34070617 PMCID: PMC8229782 DOI: 10.3390/biology10060465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
Simple Summary Identifying risk factors for cancer development can allow for appropriate stratification and surveillance of individuals at risk, increasing their chances of benefiting from early disease detection; however, most of the genetic factors contributing to the risk of colorectal cancer (CRC) remain undetermined. Here, we adopted a new approach for selecting index polymorphism for further validation in combination with a genome-wide association study of pooled DNA samples for CRC susceptibility variants in the Polish population. This study, including 2013 patients and controls, uncovered five susceptibility loci not previously reported for CRC. Four of identified variants were located within genes likely involved in tumor invasiveness and metastasis, suggesting that they could be markers of poor prognosis in CRC patients. Our results provide evidence that conducting association studies on small but homogenous populations can help us discover new common risk variants specific to the studied population. Abstract Despite great efforts, most of the genetic factors contributing to the risk of colorectal cancer (CRC) remain undetermined. Including small but homogenous populations in genome-wide association studies (GWAS) can help us discover new common risk variants specific to the studied population. In this study, including 465 CRC patients and 1548 controls, a pooled DNA samples-based GWAS was conducted in search of genetic variants associated with CRC in a Polish population. Combined with a new method of selecting single-nucleotide polymorphisms (SNPs) for verification in individual DNA samples, this approach allowed the detection of five new susceptibility loci not previously reported for CRC. The discovered loci were found to explain 10% of the overall risk of developing CRC. The strongest association was observed for rs10935945 in long non-coding RNA LINC02006 (3q25.2). Three other SNPs were also located within genes (rs17575184 in NEGR1, rs11060839 in PIWIL1, rs12935896 in BCAS3), while one was intergenic (rs9927668 at 16p13.2). An expression quantitative trait locus (eQTL) bioinformatic analysis suggested that these polymorphisms may affect transcription factor binding sites. In conclusion, four of the identified variants were located within genes likely involved in tumor invasiveness and metastasis. Therefore, they could possibly be markers of poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
- Correspondence:
| | - Anna Kluska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Magdalena Piątkowska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Aneta Bałabas
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Jakub Karczmarski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Tomasz Olesiński
- Department of Gastroenterological Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (T.O.); (Ł.Z.)
| | - Łukasz Zyskowski
- Department of Gastroenterological Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (T.O.); (Ł.Z.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| |
Collapse
|
32
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|