1
|
LE KN, Nezhat C, Nezhat C, Benor A, Decherney A. An update on endometriosis biomarkers. Minerva Obstet Gynecol 2024; 76:458-469. [PMID: 38602013 DOI: 10.23736/s2724-606x.23.05369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Endometriosis is a debilitating gynecologic disorder characterized by chronic pelvic pain, pelvic adhesions and infertility. The gold standard diagnostic modality is histologically by tissue biopsy, although it can be diagnosed empirically if symptoms improve with medical treatment. A delayed diagnosis of endometriosis often leads to a significant impairment in quality of life and work productivity; hence, significant morbidity has been shown to bear a detrimental impact on society and the economy. The ongoing novel investigation into biomarkers for diagnostic or prognostic evaluation of endometriosis may aid in earlier detection, and thereby, improve patient quality-of-life as well as minimize morbidity. Currently, no single biomarker has been validated for endometriosis; however, there are emerging data on the utility of microRNA for diagnosis and prognosis of disease activity. In this brief review, we will identify and categorize the novel biomarkers for endometriosis.
Collapse
Affiliation(s)
- Kyle N LE
- Cooper University Hospital, Camden, NJ, USA -
| | - Camran Nezhat
- Camran Nezhat Institute, Minimally Invasive & Robotic Surgery, Redwood, CA, USA
| | - Ceana Nezhat
- Atlanta Center for Minimally Invasive Surgery & Reproductive Medicine, Atlanta, GA, USA
| | - Ariel Benor
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alan Decherney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Rudzitis-Auth J, Fuß SA, Becker V, Menger MD, Laschke MW. Inhibition of erythropoietin-producing hepatoma receptor B4 (EphB4) signalling suppresses the vascularisation and growth of endometriotic lesions. Br J Pharmacol 2020; 177:3225-3239. [PMID: 32144768 DOI: 10.1111/bph.15044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The development of endometriotic lesions is crucially dependent on the formation of new blood vessels. In the present study, we analysed whether this process is regulated by erythropoietin-producing hepatoma receptor B4 (EphB4) signalling. EXPERIMENTAL APPROACH We first assessed the anti-angiogenic action of the EphB4 inhibitor NVP-BHG712 in different in vitro angiogenesis assays. Then, endometriotic lesions were surgically induced in the dorsal skinfold chamber and peritoneal cavity of NVP-BHG712- or vehicle-treated BALB/c mice. This allowed to study the effect of EphB4 inhibition on their vascularisation and growth by means of intravital fluorescence microscopy, high-resolution ultrasound imaging, histology and immunohistochemistry. KEY RESULTS Non-cytotoxic doses of NVP-BHG712 suppressed the migration, tube formation and sprouting activity of both human dermal microvascular endothelial cells (HDMEC) and mouse aortic rings. Accordingly, we also detected a lower blood vessel density in NVP-BHG712-treated endometriotic lesions. This was associated with a reduced lesion growth due to a significantly lower number of proliferating stromal cells when compared to vehicle-treated controls. CONCLUSIONS AND IMPLICATIONS Inhibition of EphB4 signalling suppresses the vascularisation and growth of endometriotic lesions. Hence, EphB4 represents a promising pharmacological target for the treatment of endometriosis.
Collapse
Affiliation(s)
| | - Sophia A Fuß
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Vivien Becker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
3
|
Sekulovski N, Whorton AE, Shi M, MacLean JA, Hayashi K. Endometriotic inflammatory microenvironment induced by macrophages can be targeted by niclosamide†. Biol Reprod 2020; 100:398-408. [PMID: 30329025 DOI: 10.1093/biolre/ioy222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Endometriosis causes severe chronic pelvic pain and infertility. We have recently reported that niclosamide treatment reduces growth and progression of endometriosis-like lesions and inflammatory signaling (NF${\rm \small K}$B and STAT3) in a mouse model. In the present study, we examined further inhibitory mechanisms by which niclosamide affects endometriotic lesions using an endometriotic epithelial cell line, 12Z, and macrophages differentiated from a monocytic THP-1 cell line. Niclosamide dose dependently reduced 12Z viability, reduced STAT3 and NF${\rm \small K}$B activity, and increased both cleaved caspase-3 and cleaved PARP. To model the inflammatory microenvironment in endometriotic lesions, we exposed 12Z cells to macrophage conditioned media (CM). Macrophages were differentiated from THP-1 cells using 12-O-tetradecanoylphorbol-13-acetate as M0, and then M0 macrophages were polarized into M1 or M2 using LPS/IFNγ or IL4/IL13, respectively. Conditioned media from M0, M1, or M2 cultures increased 12Z viability. This effect was blocked by niclosamide, and cell viability returned to that of CM from cells treated with niclosamide alone. To assess proteins targeted by niclosamide in 12Z cells, CM from 12Z cells cultured with M0, M1, or M2 with/without niclosamide were analyzed by cytokine/chemokine protein array kits. Conditioned media from M0, M1, and/or M2 stimulated the secretion of cytokines/chemokines from 12Z cells. Production of most of these secreted cytokines/chemokines in 12Z cells was inhibited by niclosamide. Knockdown of each gene in 12Z cells using siRNA resulted in reduced cell viability. These results indicate that niclosamide can inhibit the inflammatory factors in endometriotic epithelial cells stimulated by macrophages by targeting STAT3 and/or NF${\rm \small K}$B signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
4
|
Pluchino N, Mamillapalli R, Shaikh S, Habata S, Tal A, Gaye M, Taylor HS. CXCR4 or CXCR7 antagonists treat endometriosis by reducing bone marrow cell trafficking. J Cell Mol Med 2020; 24:2464-2474. [PMID: 31904910 PMCID: PMC7028867 DOI: 10.1111/jcmm.14933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/29/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
Adult stem cells have a major role in endometrial physiology, including remodelling and repair. However, they also have a critical role in the development and progression of endometriosis. Bone marrow-derived stem cells engraft eutopic endometrium and endometriotic lesions, differentiating to both stromal and epithelial cell fates. Using a mouse bone marrow transplantation model, we show that bone marrow-derived cells engrafting endometriosis express CXCR4 and CXCR7. Targeting either receptor by the administration of small molecule receptor antagonists AMD3100 or CCX771, respectively, reduced BM-derived stem cell recruitment into endometriosis implants. Endometriosis lesion size was decreased compared to vehicle controls after treatment with each antagonist in both an early growth and established lesion treatment model. Endometriosis lesion size was not effected when the local effects of CXCL12 were abrogated using uterine-specific CXCL12 null mice, suggesting an effect primarily on bone marrow cell migration rather than a direct endometrial effect. Antagonist treatment also decreased hallmarks of endometriosis physiopathology such as pro-inflammatory cytokine production and vascularization. CXCR4 and CXCR7 antagonists are potential novel, non-hormonal therapies for endometriosis.
Collapse
Affiliation(s)
- Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Shutaro Habata
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Marie Gaye
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Pluchino N, Mamillapalli R, Moridi I, Tal R, Taylor HS. G-Protein-Coupled Receptor CXCR7 Is Overexpressed in Human and Murine Endometriosis. Reprod Sci 2018; 25:1168-1174. [PMID: 29587613 DOI: 10.1177/1933719118766256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endometriosis is a chronic inflammatory disease. Dysfunctional regulation of chemokines and chemokine receptors is a crucial aspect of endometriosis pathogenesis. Chemokine G-protein-coupled receptors (GPCRs) are important drug targets that regulate inflammation and immunity. Recently, CXCR7, a C-X-C motif containing GPCR, has been identified as a receptor for chemokine ligand CXCL12, one of the best characterized chemokines for cell trafficking, angiogenesis, and cell proliferation in cancer and inflammation. Here, we investigated the expression and localization of CXCR7 in human endometriosis and a murine model of the disease. Normal endometrial epithelium and stroma showed undetectable or very low expression of CXCR7, without any significant changes across phases of the menstrual cycle in humans. CXCR7 is significantly upregulated in endometriosis, showing higher staining in glands and in associated vessels. The mouse model recapitulated the human findings. In conclusion, overexpression of CXCR7 in different cellular populations of endometriosis microenvironment may play a role in the pathogenesis and represent a novel target for treatment.
Collapse
Affiliation(s)
- Nicola Pluchino
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Irene Moridi
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Reshef Tal
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Ahn SH, Khalaj K, Young SL, Lessey BA, Koti M, Tayade C. Immune-inflammation gene signatures in endometriosis patients. Fertil Steril 2016; 106:1420-1431.e7. [PMID: 27475412 DOI: 10.1016/j.fertnstert.2016.07.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine if the molecular profiles of endometriotic lesions contain informative measures of inflammation and immune dysfunction that may contribute to better understanding of the interplay between immune dysfunction and inflammation and their contribution to endometriosis pathogenesis. DESIGN Immune and inflammation transcriptomic analysis with the use of the Nanostring nCounter GX Human Immunology V2 platform (579 human immune and inflammation-related genes and 15 housekeeping genes). SETTING Academic university and teaching hospital. INTERVENTION(S) None. PATIENT(S) Stage III-IV endometriosis patients with infertility (n = 8) and fertile disease-free control women undergoing tubal ligation (n = 8). Menstrual stage was matched to secretory phase in all participants. MAIN OUTCOME MEASURE(S) Immune and inflammation transcriptomics quantification from ectopic endometriotic lesions and matched eutopic endometrium from patients. Endometria of fertile women served as control subjects. RESULT(S) Our results displayed endometriotic lesions as molecularly distinct entities compared with eutopic endometrium and endometrium of control samples; 396 out of 579 screened immune and inflammation-related genes were significantly different in ectopic tissues compared with control endometrium. Most importantly, eutopic endometrium of the patients displayed a unique molecular profile compared with the control endometrium (91/579 genes were significantly different), particularly of genes involved in regulation of cell apoptosis and decidualization. CONCLUSION(S) We characterize differential expression of immune-inflammation genes in endometriosis patients, and show molecular distinction of eutopic endometrium of patients compared with control fertile women.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
7
|
Greene AD, Lang SA, Kendziorski JA, Sroga-Rios JM, Herzog TJ, Burns KA. Endometriosis: where are we and where are we going? Reproduction 2016; 152:R63-78. [PMID: 27165051 DOI: 10.1530/rep-16-0052] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022]
Abstract
Endometriosis currently affects ~5.5 million reproductive-aged women in the U.S. with symptoms such as painful periods (dysmenorrhea), chronic pelvic pain, pain with intercourse (dyspareunia), and infertility. It is defined as the presence of endometrial tissue outside the uterine cavity and is found predominately attached to sites within the peritoneal cavity. Diagnosis for endometriosis is solely made through surgery as no consistent biomarkers for disease diagnosis exist. There is no cure for endometriosis and treatments only target symptoms and not the underlying mechanism(s) of disease. The nature of individual predisposing factors or inherent defects in the endometrium, immune system, and/or peritoneal cavity of women with endometriosis remains unclear. The literature over the last 5 years (2010-2015) has advanced our critical knowledge related to hormones, hormone receptors, immune dysregulation, hormonal treatments, and the transformation of endometriosis to ovarian cancer. In this review, we cover the aforementioned topics with the goal of providing the reader an overview and related references for further study to highlight the progress made in endometriosis research, while concluding with critical areas of endometriosis research that are urgently needed.
Collapse
Affiliation(s)
- Alexis D Greene
- Department of Obstetrics and GynecologyUniversity of Cincinnati Center for Reproductive Health, Cincinnati, Ohio, USA
| | - Stephanie A Lang
- Department of Environmental HealthUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jessica A Kendziorski
- Department of Environmental HealthUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Julie M Sroga-Rios
- Department of Obstetrics and GynecologyUniversity of Cincinnati Center for Reproductive Health, Cincinnati, Ohio, USA
| | - Thomas J Herzog
- Department of Obstetrics and GynecologyUniversity of Cincinnati Center for Reproductive Health, Cincinnati, Ohio, USA University of Cincinnati Cancer InstituteUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine A Burns
- Department of Environmental HealthUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Ahn SH, Edwards AK, Singh SS, Young SL, Lessey BA, Tayade C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. THE JOURNAL OF IMMUNOLOGY 2015; 195:2591-600. [PMID: 26259585 DOI: 10.4049/jimmunol.1501138] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
Abstract
Endometriosis is a chronic, inflammatory disease characterized by the growth of endometrial tissue in aberrant locations outside the uterus. Neoangiogenesis or establishment of new blood supply is one of the fundamental requirements of endometriotic lesion survival in the peritoneal cavity. IL-17A is emerging as a potent angiogenic and proinflammatory cytokine involved in the pathophysiology of several chronic inflammatory diseases such as rheumatoid arthritis and psoriasis. However, sparse information is available in the context of endometriosis. In this study, we demonstrate the potential importance of IL-17A in the pathogenesis and pathophysiology of endometriosis. The data show a differential expression of IL-17A in human ectopic endometriotic lesions and matched eutopic endometrium from women with endometriosis. Importantly, surgical removal of lesions resulted in significantly reduced plasma IL-17A concentrations. Immunohistochemistry revealed localization of IL-17A primarily in the stroma of matched ectopic and eutopic tissue samples. In vitro stimulation of endometrial epithelial carcinoma cells, Ishikawa cells, and HUVECs with IL-17A revealed significant increase in angiogenic (vascular endothelial growth factor and IL-8), proinflammatory (IL-6 and IL-1β), and chemotactic cytokines (G-CSF, CXCL12, CXCL1, and CX3CL1). Furthermore, IL-17A promoted tubulogenesis of HUVECs plated on Matrigel in a dose-dependent manner. Thus, we provide the first evidence, to our knowledge, that endometriotic lesions produce IL-17A and that the removal of the lesion via laparoscopic surgery leads to the significant reduction in the systemic levels of IL-17A. Taken together, our data show a likely important role of IL-17A in promoting angiogenesis and proinflammatory environment in the peritoneal cavity for the establishment and maintenance of endometriosis lesions.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andrew K Edwards
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sukhbir S Singh
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario K1H 7W9, Canada
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27514; and
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, SC 29605
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|
9
|
Ahn SH, Monsanto SP, Miller C, Singh SS, Thomas R, Tayade C. Pathophysiology and Immune Dysfunction in Endometriosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:795976. [PMID: 26247027 PMCID: PMC4515278 DOI: 10.1155/2015/795976] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/18/2014] [Indexed: 12/30/2022]
Abstract
Endometriosis is an estrogen-dependent, chronic, proinflammatory disease prevalent in 10% of women of reproductive age worldwide. Characterized by the growth of endometrium-like tissue in aberrant locations outside of the uterus, it is responsible for symptoms including chronic pelvic pain, dysmenorrhea, and subfertility that degrade quality of life of women significantly. In Canada, direct and indirect economic cost of endometriosis amounts to 1.8 billion dollars, and this is elevated to 20 billion dollars in the United States. Despite decades of research, the etiology and pathophysiology of endometriosis still remain to be elucidated. This review aims to bring together the current understanding regarding the pathogenesis of endometriosis with specific focus on mechanisms behind vascularization of the lesions and the contribution of immune factors in facilitating lesion establishment and development. The role of hormones, immune cells, and cytokine signaling is highlighted, in addition to discussing the current pharmaceutical options available for management of pain symptoms in women with endometriosis.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Stephany P. Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Caragh Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Sukhbir S. Singh
- Department of Obstetrics and Gynecology, University of Ottawa, The Ottawa Hospital, ON, Canada K1H 7W9
| | - Richard Thomas
- Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, ON, Canada K7L 3N6
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
10
|
Edwards AK, Ramesh S, Singh V, Tayade C. A peptide inhibitor of synuclein-γ reduces neovascularization of human endometriotic lesions. Mol Hum Reprod 2014; 20:1002-8. [PMID: 25024138 DOI: 10.1093/molehr/gau054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is a chronic painful gynecological condition characterized by adherence and growth of endometrium outside of the uterine cavity. Neovascularization is essential to the developing endometriosis lesion to support its growth. Synuclein-γ (SNCG), a protein implicated in cellular proliferation, is associated with a broad range of malignancies as well as endometriosis. We hypothesized that SNCG plays an important role in the neovascularization and growth of endometriosis and blocking of SNCG will interfere with survival of endometriotic lesions in a mouse model. We developed SP012, a novel 12 amino acid peptide inhibitor of SNCG. SP012 inhibited three-dimensional endothelial cell tube formation in a dose-dependent manner. Using intravital microscopy, SP012 was shown to be successfully delivered to human endometriotic lesions in a xenograft mouse model in vivo. Alymphoid (BALB/c-Rag2-/-Il2rγ-/- lacking T, B and NK cells) mice were surgically induced with human endometriotic lesions and treated with SP012 or phosphate-buffered saline control. SP012 treated endometriotic lesions had decreased growth, development and vascularization at the time of necroscopy. Endometriotic lesions treated with SP012 also had fewer isolectin (+) microvessels. These results, using a mouse model, indicate that SNCG plays a role in the neovascularization and subsequent growth of human endometriotic lesions. Targeting SNCG function using peptide inhibitor might provide a potential therapeutic option for the treatment of endometriosis in the future.
Collapse
Affiliation(s)
- Andrew Kenneth Edwards
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Sharanya Ramesh
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Vinay Singh
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| |
Collapse
|