1
|
Yao Y, Ye Y, Chen J, Zhang M, Cai X, Zheng C. Maternal-fetal immunity and recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13859. [PMID: 38722063 DOI: 10.1111/aji.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jia Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
2
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
3
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Chen Y, Xiao L, Xu J, Wang J, Yu Z, Zhao K, Zhang H, Cheng S, Sharma S, Liao A, Liu C. Recent insight into autophagy and immunity at the maternal-fetal interface. J Reprod Immunol 2023; 155:103781. [PMID: 36463798 DOI: 10.1016/j.jri.2022.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Autophagy is a lysosomal degradation pathway that supports metabolic adaptation and energy cycling. It is essential for cell homeostasis, differentiation, development, and survival. Recent studies have shown that autophagy could influence immune responses by regulating immune cell functions. Reciprocally, immune cells strongly influence autophagy. Immune cells at the maternal-fetal interface are thought to play essential roles in pregnancy. Here, we review the induction of autophagy at the maternal-fetal interface and its role in decidualization and placental development. Additionally, we emphasize the role of autophagy in the immune microenvironment at the maternal-fetal interface, including innate immunity, adaptive immunity, and immune tolerance molecules. It also suggests new research directions and prospects.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Jingming Wang
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Zhiquan Yu
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Shibin Cheng
- Department of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
5
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
6
|
Liu T, Li B, Zhou X, Chen H. A Study on the Time-Effect and Dose-Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods 2022; 11:foods11091340. [PMID: 35564063 PMCID: PMC9100615 DOI: 10.3390/foods11091340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate the protective effect of Opuntia dillenii (Ker-Gaw) Haw. polysaccharide (ODP) against cadmium-induced liver injury. Cadmium chloride (CdCl2) was used to construct a mice evaluation model, and the indicators chosen included general signs, liver index, biochemical indicators, blood indicators, and pathological changes. A dose of 200 mg/kg ODP was applied to the mice exposed to cadmium for different lengths of time (7, 14, 21, 28, and 35 days). The results showed that CdCl2 intervention led to slow weight growth (reduced by 13−20%); liver enlargement; significantly increased aspartate aminotransferase (AST, 45.6−52.0%), alanine aminotransferase (ALT, 26.6−31.3%), and alkaline phosphatase (ALP, 38.2−43.1%) levels; and significantly decreased hemoglobin (HGB, 13.1−15.2%), mean corpuscular hemoglobin (MCH, 16.5−19.3%), and mean corpuscular hemoglobin concentrations (MCHC, 8.0−12.7%) (p < 0.01). In addition, it led to pathological features such as liver cell swelling, nuclear exposure, central venous congestion, apoptosis, and inflammatory cell infiltration. The onset of ODP anti-cadmium-induced liver injury occurred within 7 days after administration, and the efficacy reached the highest level after continuous administration for 14 days, a trend that could continue until 35 days. Different doses (50, 100, 200, 400, and 600 mg/kg) of ODP have a certain degree of protective effect on cadmium-induced liver injury, showing a good dose−effect relationship. After 28 days of administration of a 200 mg/kg dose, all pathological indicators were close to normal values. These findings indicated that ODP had positive activity against cadmium-induced liver injury and excellent potential for use as a health food or therapeutic drug.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Bianli Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
- Correspondence: ; Tel.: +86-851-8669-0018; Fax: +86-851-8669-0018
| |
Collapse
|
7
|
The Role of Dendritic Cell Subsets in Recurrent Spontaneous Abortion and the Regulatory Effect of Baicalin on It. J Immunol Res 2022; 2022:9693064. [PMID: 35224114 PMCID: PMC8872676 DOI: 10.1155/2022/9693064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a relevant complication of pregnancy. Aberrant dendritic cell (DC) activities and differentiation have been identified to be involved in RSA, but the underlying mechanisms remain unclear. Baicalin from Radix Scutellariae possesses a wide range of pharmacological and biological activities. However, the effect of baicalin on DC function in RSA has not been investigated. Here, we analyzed the changes of peripheral and maternal-fetal interface DC subsets and function in patients and mice with RSA, respectively. Then, we further treated RSA mice with baicalin and analyzed the therapeutic effect and underlying mechanism. We found that DCs from the peripheral blood and decidua of RSA patients and the maternal-fetal of RSA mice were all polarized to conventional DCs, whose proportion was positively correlated with the mice embryo absorption rate. Moreover, DCs from RSA patients and mice showed increased expression of HLA-DR/MHC-II, CD80, and CD86 but decreased expression of CD274 and 33D1. Importantly, baicalin could alleviate embryo resorption of RSA mice by reversing conventional DCs to plasmacytoid DCs and functional molecule expression via inhibiting the STAT5-ID2 pathway. Our research further proved that DCs play an important role in the pathogenesis of RSA and baicalin might be used for treating RSA.
Collapse
|
8
|
Wei Y, Ding J, Li J, Cai S, Liu S, Hong L, Yin T, Zhang Y, Diao L. Metabolic Reprogramming of Immune Cells at the Maternal-Fetal Interface and the Development of Techniques for Immunometabolism. Front Immunol 2021; 12:717014. [PMID: 34566973 PMCID: PMC8458575 DOI: 10.3389/fimmu.2021.717014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Immunity and metabolism are interdependent and coordinated, which are the core mechanisms for the body to maintain homeostasis. In tumor immunology research, immunometabolism has been a research hotspot and has achieved groundbreaking changes in recent years. However, in the field of maternal-fetal medicine, research on immunometabolism is still lagging. Reports directly investigating the roles of immunometabolism in the endometrial microenvironment and regulation of maternal-fetal immune tolerance are relatively few. This review highlights the leading techniques used to study immunometabolism and their development, the immune cells at the maternal-fetal interface and their metabolic features required for the implementation of their functions, explores the interaction between immunometabolism and pregnancy regulation based on little evidence and clues, and attempts to propose some new research directions and perspectives.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianan Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| |
Collapse
|
9
|
Zhu XX, Yin XQ, Hei GZ, Wei R, Guo Q, Zhao L, Zhang Z, Chu C, Fu XX, Xu K, Li X. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion. Mol Hum Reprod 2021; 27:6317516. [PMID: 34240166 PMCID: PMC8355038 DOI: 10.1093/molehr/gaab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of early pregnancy. Dendritic cells (DCs) are thought to confer fetal–maternal immunotolerance and play a crucial role in ensuring a successful pregnancy. A decrease of plasmacytoid dendritic cells (pDCs) was found to be involved in RSA, but the underlying mechanisms of decreased pDC in RSA remain unclear. MicroRNAs (miRNAs) play critical roles in RSA as well as the development, differentiation and functional regulation of pDCs; however, the regulatory effect of miRNAs on pDC in RSA has not been fully investigated. Here we demonstrated that both the proportion of pDC and signal transducer and activator of transcription (STAT3)/transcription factor 4 (Tcf4/E2-2) expression decreased in the peripheral blood mononuclear cells and decidua of patients with RSA compared to those with normal pregnancy (NP), and there was a significantly positive correlation between pDC and STAT3 mRNA. MiRNA microarray assay and quantitative reverse transcription PCR results showed that miR-6875-5p expression was markedly increased in women with RSA and negatively correlated with mRNA expression level of STAT3. Up-regulated miR-6875-5p could sensitively discriminate patients with RSA from NP subjects. Overexpression of miR-6875-5p significantly down-regulated the mRNA expression of STAT3 and E2-2 as well as the protein and phosphorylation level of STAT3, while miR-6875-5p knockdown showed opposite results. Dual luciferase reporter verified that miR-6875-5p regulated STAT3 expression by directly binding to its 3'untranslated region. Overall, our results suggested that increased miR-6875-5p is involved in RSA by decreasing the differentiation of pDCs via inhibition of the STAT3/E2-2 signaling pathway. miR-6875-5p may be explored as a promising diagnostic marker and therapeutic target for RSA.
Collapse
Affiliation(s)
- Xiao-Xiao Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xun-Qiang Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guo-Zhen Hei
- Shandong Province Maternal and Child Health Care Hospital, Jinan, Shandong, China
| | - Ran Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Qiang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chu Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao-Xiao Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Ke Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
10
|
Wang S, Wu P, Wang K, Ji X, Chen D, Jiang A, Liu Y, Xiao W, Jiang Y, Zhu L, Xu X, Li M, Li X, Tang G. Transcriptome Analysis Reveals Key Genes and Pathways Associated with Mummify Piglets. Genome 2021; 64:1029-1040. [PMID: 34139142 DOI: 10.1139/gen-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
China is the country with the largest pork consumption in the world. However, the incidence of high mummify piglets (3-5%) is one of the important factors that cause the slow improvement of pig reproductive capacity, and the genetic mechanism is still unclear. This study aimed to identify candidate genes related to high mummify piglets. RNA-seq technology was used to comparative transcriptome profiling of blood from high piglets mummified and healthy sow at different stages of pregnancy (35d, 56d, 77d and 98d). A total of 137 to 420 DEGs were detected in each stage. Seven differentially expressed genes were significantly differentially expressed at various stages. IL-9R, TLR8, ABLIM3, FSH-α, ASCC1, PRKCZ, and GCK may play an important role in course of mummify piglets. The differential genes we identified between the groups were mainly enriched in immune and inflammation regulation, and others were mainly enriched in reproduction. Considering the function of candidate genes, IL-9R and TLR8 were suggested as the most promising candidate genes involved in mummify piglet traits. We speculate that during pregnancy, it may be the combined effects of the above-mentioned inflammation, immune response, and reproduction-related signal pathways that affect the occurrence of mummifying piglets, and further affect pig reproduction.
Collapse
Affiliation(s)
- Shujie Wang
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Pingxian Wu
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Kai Wang
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Xiang Ji
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Dong Chen
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Anan Jiang
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Yihui Liu
- Sichuan Animal Husbandry Station, Chengdu, Sichuan, China;
| | - Weihang Xiao
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an, China;
| | - Li Zhu
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Xu Xu
- Sichuan Provincial Animal Husbandry and Food Bureau, 177358, Chengdu, Sichuan, China;
| | - Mingzhou Li
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Xuewei Li
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Guoqing Tang
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| |
Collapse
|
11
|
Li D, Zheng L, Zhao D, Xu Y, Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci 2021; 28:3303-3315. [PMID: 34101149 PMCID: PMC8186021 DOI: 10.1007/s43032-021-00599-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion (RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
Collapse
Affiliation(s)
- Dan Li
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | | | - Ying Xu
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, 130000, China.
| |
Collapse
|
12
|
Wei R, Lai N, Zhao L, Zhang Z, Zhu X, Guo Q, Chu C, Fu X, Li X. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother 2020; 133:110921. [PMID: 33378991 DOI: 10.1016/j.biopha.2020.110921] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) play a critical immuno-modulating role in pregnancy, which requires the maternal immune system to tolerate semiallogeneic fetus and at the same time to maintain adequate defense against pathogens. DCs interact closely with other immune components such as T cells, natural killer cells and macrophages, as well as the endocrine system to keep a pregnancy-friendly environment. Aberrant DC activities have been related to various pregnancy-associated diseases such as recurrent spontaneous abortion, preterm birth, pre-eclampsia, peripartum cardiomyopathy and infectious pregnancy complications. These findings make DCs an attractive candidate for prevention or therapy on the pregnancy-associated diseases. Here, we review recent findings that provide new insights into the roles of DCs in pregnancy and the related diseases. We also discuss the medical potentials to manipulate DCs in clinics. Whereas this is an emerging area with much work remaining, we anticipate that a better understanding of the role of DCs in maternal-fetal immunotolerance and a therapeutic manipulation of DCs will help women suffering from the pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Nannan Lai
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoxiao Fu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
13
|
Abstract
In this article, the authors provide a general overview of the major immune cells present at the maternal-fetal interface, describe the key mechanisms used by the placenta to promote maternal immune regulation, tolerance, and adaptation, and discuss how dysregulation of these pathways could lead to obstetric complications such as pregnancy loss and preeclampsia. Finally, they conclude with a description of the innate immune properties of the human placenta that not only serve to protect the pregnancy from infection but also contribute to pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 309A, New Haven, CT 06510, USA
| | - Vikki M Abrahams
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci 2019; 20:E5332. [PMID: 31717776 PMCID: PMC6862690 DOI: 10.3390/ijms20215332] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) represents an unresolved problem for contemporary gynecology and obstetrics. In fact, it is not only a relevant complication of pregnancy, but is also a significant reproductive disorder affecting around 5% of couples desiring a child. The current knowledge on RPL is largely incomplete, since nearly 50% of RPL cases are still classified as unexplained. Emerging evidence indicates that the endometrium is a key tissue involved in the correct immunologic dialogue between the mother and the conceptus, which is a condition essential for the proper establishment and maintenance of a successful pregnancy. The immunologic events occurring at the maternal-fetal interface within the endometrium in early pregnancy are extremely complex and involve a large array of immune cells and molecules with immunoregulatory properties. A growing body of experimental studies suggests that endometrial immune dysregulation could be responsible for several, if not many, cases of RPL of unknown origin. The present article reviews the major immunologic pathways, cells, and molecular determinants involved in the endometrial dysfunction observed with specific application to RPL.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Adalgisa Pietropolli
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Laego A. Gemelli, 8, 00168, Rome Italy;
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emilio Piccione
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
15
|
Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, Vega-Sánchez R, Díaz L, Zaga-Clavellina V. Innate Immune Cells and Toll-like Receptor-Dependent Responses at the Maternal-Fetal Interface. Int J Mol Sci 2019; 20:ijms20153654. [PMID: 31357391 PMCID: PMC6695670 DOI: 10.3390/ijms20153654] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, the placenta, the mother and the fetus exploit several mechanisms in order to avoid fetal rejection and to maintain an immunotolerant environment throughout nine months. During this time, immune cells from the fetal and maternal compartments interact to provide an adequate defense in case of an infection and to promote a tolerogenic milieu for the fetus to develop peacefully. Trophoblasts and decidual cells, together with resident natural killer cells, dendritic cells, Hofbauer cells and other macrophages, among other cell types, contribute to the modulation of the uterine environment to sustain a successful pregnancy. In this review, the authors outlined some of the various roles that the innate immune system plays at the maternal-fetal interface. First, the cell populations that are recruited into gestational tissues and their immune mechanisms were examined. In the second part, the Toll-like receptor (TLR)-dependent immune responses at the maternal-fetal interface was summarized, in terms of their specific cytokine/chemokine/antimicrobial peptide expression profiles throughout pregnancy.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Rodrigo Vega-Sánchez
- Departamento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico.
| |
Collapse
|
16
|
Wang LQ, Yu XW, Zhang YA, Chu J, Zhou XL, Zhang HM, Cao GF, Teng L. Decreased expression of CD200 and CD200R1 by human decidual tissues in spontaneous early abortion. J Matern Fetal Neonatal Med 2019; 33:3399-3408. [PMID: 30897989 DOI: 10.1080/14767058.2019.1572741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To examine the cellular distribution and the expression of CD200 and its receptor 1 (CD200R1) in human deciduas in first-trimester pregnant women with spontaneous early abortion (SEA) and normal pregnancy, and to explore their role in the etiology of SEA.Subjects and methods: Thirty-five women at 6-10-week gestation with SA and 30 women of similar gestational age with a healthy pregnancy were recruited. Expression of CD200 and CD200R1 in the deciduas was determined using immunohistochemistry, confocal laser scanning microscope, Western blot, and real-time PCR (RT-PCR).Results: The decidual stromal cells, glandular epithelial cells, and vessel endothelial cells during the first trimester of pregnancy express both CD200 and CD200R1 proteins. During this period, the expression of CD200 in glandular epithelial cells and vessel endothelial cells is significantly higher in normal pregnancy than that in women with SEA (0.3079 ± 0.0674 versus 0.2735 ± 0.0515; 0.4077 ± 0.1366 versus 0.3249 ± 0.0993); the expression of CD200R1 in stromal cells, decidual stromal cells, glandular epithelial cells is significantly higher during normal pregnancy than SEA (0.2574 ± 0.0588 versus 0.2292 ± 0.0415; 0.3617 ± 0.1046 versus 0.2804 ± 0.0640). Western blot analysis showed an approximately 44% decrease in CD200R1expression in decidua in the SEA versus the controls. Finally, in decidua, the expression of both CD200 protein and CD200R1 transcript are significantly higher in healthy first-trimester pregnancy than in SEA (CD200: 2.2089 ± 1.2754 versus 0.7241 ± 0.2143; CD200R1: 15.7843 ± 10.7085 versus 7.3381 ± 5.8529).Conclusions: Women with SEA have a lower level of CD200 and CD200R1 expression in deciduas compared with normal pregnant women suggesting that under physiological conditions, CD200 and CD200R1 expression by deciduas is important to prevent fetal loss ensure a successful pregnancy.
Collapse
Affiliation(s)
- Li-Qin Wang
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| | - Xue-Wen Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yong-Ai Zhang
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| | - Jing Chu
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| | - Xiao-Lan Zhou
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| | - Hai-Miao Zhang
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| | - Guo-Fen Cao
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| | - Li Teng
- Nursing Department and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical College, Xi'an, P. R. China
| |
Collapse
|
17
|
Vazquez J, Chavarria M, Li Y, Lopez GE, Stanic AK. Computational flow cytometry analysis reveals a unique immune signature of the human maternal-fetal interface. Am J Reprod Immunol 2018; 79:10.1111/aji.12774. [PMID: 29030900 PMCID: PMC5725254 DOI: 10.1111/aji.12774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Decidual immune dysregulation is thought to underlie major pregnancy disorders; however, incomplete understanding of the decidual immune interface has hampered the mechanistic investigation. METHOD OF STUDY Human term decidua was collected, and single-cell phenotypic information was acquired by highly polychromatic flow cytometry. Cellular identity analysis was performed with t-distributed stochastic neighbor embedding, DensVM clustering, and matched to CellOntology database. RESULTS Traditional analytical methods validated known cellular T and dendritic cell subsets in human term decidua. Computational analysis revealed a complex and tissue-specific decidual immune signature in both the innate and adaptive immune compartments. CONCLUSION Polychromatic flow cytometry with a streamlined computational analysis pipeline is a feasible approach to comprehensive immunome mapping of human term decidua. As an unbiased, standardized method of investigation, computational flow cytometry promises to unravel the immune pathology of pregnancy disorders.
Collapse
Affiliation(s)
- Jessica Vazquez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Melina Chavarria
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Yan Li
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
18
|
Co-Signaling Molecules in Maternal-Fetal Immunity. Trends Mol Med 2016; 23:46-58. [PMID: 27914866 DOI: 10.1016/j.molmed.2016.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Physiologically, a successful pregnancy requires the maternal immune system to recognize and tolerate the semiallogeneic fetus, and allow for normal invasion of trophoblasts. Thus, pregnancy complications are considered to be associated with dysfunctional maternal-fetal crosstalk. Co-signaling molecules are a group of cell surface molecules that positively or negatively modulate the immune response. Well studied in the fields of oncology and transplantation, they are also suggested to be involved in maternal-fetal crosstalk. Here, we review the latest knowledge on the expression and function of such co-signaling molecules, highlighting their immunoregulatory roles in maternal-fetal tolerance and decidual vascular remodeling, and their involvement in pathological pregnancies. This review may instruct future basic research on, and clinical applications for, maternal-fetal immunity.
Collapse
|