1
|
Wang J, Han T, Zhu X. Role of maternal-fetal immune tolerance in the establishment and maintenance of pregnancy. Chin Med J (Engl) 2024; 137:1399-1406. [PMID: 38724467 PMCID: PMC11188918 DOI: 10.1097/cm9.0000000000003114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 06/21/2024] Open
Abstract
ABSTRACT Normal pregnancy is a contradictory and complicated physiological process. Although the fetus carries the human leukocyte antigen (HLA) inherited from the paternal line, it does not cause maternal immune rejection. As the only exception to immunological principles, maternal-fetal immune tolerance has been a reproductive immunology focus. In early pregnancy, fetal extravillous trophoblast cells (EVTs) invade decidual tissues and come into direct contact with maternal decidual immune cells (DICs) and decidual stromal cells (DSCs) to establish a sophisticated maternal-fetal crosstalk. This study reviews previous research results and focuses on the establishment and maintenance mechanism of maternal-fetal tolerance based on maternal-fetal crosstalk. Insights into maternal-fetal tolerance will not only improve understanding of normal pregnancy but will also contribute to novel therapeutic strategies for recurrent spontaneous abortion, pre-eclampsia, and premature birth.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
- Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
- Department of Obstetrics and Gynaecology, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, China
| |
Collapse
|
2
|
Strbo N, Rodriguez S, Padula L, Fisher E, Lyons A, Rodriguez C, Rivas K, Ibrahim M, Paidas M, Attia G. Assessment of immune cells in the uterine fluid at the time of the embryo transfer. Am J Reprod Immunol 2024; 91:e13842. [PMID: 38650366 DOI: 10.1111/aji.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 04/25/2024] Open
Abstract
PROBLEM Although endometrial receptivity is a key factor in influencing implantation in both naturally conceived and assisted reproductive technology (ART) cycles, very little is known about the endometrium milieu around the time of implantation. Previous studies have demonstrated the presence of several cytokines in the endometrium that affect implantation. However, there is lacking data about the presence of immune cell subtypes within the endometrium and in the uterine cavity at the time of implantation. METHOD OF STUDY This study was approved by the Institutional Review Board (# 225589). The study was designed as a prospective observational cohort study between May 2021 and December 2022 at a single academic-based fertility center. All patients underwent at least one In Vitro Fertilization (IVF) cycle and have frozen embryos. Twenty-four participants were recruited for this study which was conducted during the frozen embryo transfer (FET) cycle regardless of the outcome of previous cycles. Two samples were acquired from each subject, denoted as lower and upper. A trial transfer catheter was introduced under ultrasound guidance into the lower uterine segment. Upon removal, the tip was rinsed in IMDM medium containing 10% FBS (lower uterus). A transfer catheter was then loaded with the embryo that was placed in the upper uterus under ultrasound guidance. The tip of the transfer catheter was rinsed in separate aliquot of the above media (upper uterus). After centrifugation, pelleted cells were stained for the following surface markers: CD45, CD3, CD19, CD4, CD8, gamma delta TCR, CD25, CD127, CD66b, CD14, CD16, CD56 and acquired on Sony SP6800 Spectral Analyzer. RESULTS Upon staining the pelleted cells, we were able to identify viable leukocytes from samples obtained from both, upper and lower uterus (0.125 × 106 cells ± SD 0.32), (0.123 × 106 cells ± SD 0.12), respectively. Among total viable cells, there was no significant difference in both percent and number of CD45+ cells between the upper and lower uterus (9.88% ± 6.98 SD, 13.67% ± 9.79 SD, p = .198) respectively. However, there was significantly higher expression of CD3+ (p = .006), CD19+ (p = .032) and CD14+ (p = .019) cells in samples collected from upper compared to lower uterus. Within all CD3+ cells, we found that gamma delta T cells (GDT) were the major population of T cells in both upper and lower uterus. In contrast, CD8+ T cells were significantly higher in the lower uterus when compared to the upper uterus (p = .009). There was no statistically significant difference in the expression of CD4+ T cells, T regulatory cells (CD4+CD25+CD127-), NK cells (CD56+), neutrophils (CD66b+) and FcγRIII+ cells (CD16+) between upper and lower uterus. CONCLUSIONS We believe the immune milieu at the time of embryo transfer will affect implantation. Understanding the composition of immune cells will guide further research in identifying optimal immune milieus that favor implantation. Comprehensive analysis of endometrium is expected to lead to new diagnostic and therapeutic approaches to improve IVF outcomes.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suset Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Annabel Lyons
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carolina Rodriguez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katelyn Rivas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mohammed Ibrahim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - George Attia
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Li L, Liu Y, Zhou W, Yang C, Feng T, Li H. Human chorionic gonadotrophin indirectly activates peripheral γδT cells to produce interleukin-10 during early pregnancy. Immun Inflamm Dis 2024; 12:e1119. [PMID: 38270320 PMCID: PMC10777880 DOI: 10.1002/iid3.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUNDS The immunomodulatory properties of human chorionic gonadotrophin (hCG) have been identified to be critical for successful pregnancy. However, the effects of hCG on peripheral γδT cells during early pregnancy have not been reported previously. METHODS We cocultured the purified γδT cells and peripheral blood mononuclear cells (PBMCs) with early pregnancy-relevant hCG concentrations and investigated the changes in the immune functional characteristics of γδT cells via flow cytometry assays. RESULTS The ratios of CD69+ and IL-10+ γδT cells were increased in early pregnant women compared to nonpregnant women. γδT cells expressed low levels of the mannose receptor (CD206) instead of the classical hCG/LH receptor for hCG. The direct treatment of purified γδT cells with early pregnancy-relevant hCG concentrations may have no significant effects on their immune functions. Interestingly, when PBMCs were treated with the same broad range of hCG concentrations, the ratios of CD69+ and IL-10+ γδT cells to total γδT cells were significantly increased. CONCLUSION Certain early pregnancy-relevant hCG concentrations could enhance the ratios of peripheral CD69+ and IL-10+ γδT cells, contributing to the activation of γδT cells and immunological tolerance during early pregnancy. However, these affects may not be strongly mediated by direct ligand-receptor interactions and they may highly depend on immune microenvironment. Our novel observations propose a perspective into the endocrine-immune dialog that exists between the fetus and maternal immune cells.
Collapse
Affiliation(s)
- Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Chuan Yang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease‐Related Molecular NetworkSichuan UniversityChengduChina
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Wang L, Li J, Jiang S, Li Y, Guo R, Chen Y, Chen Y, Yu H, Qiao Q, Zhan M, Yin Z, Xiang Z, Xu C, Xu Y. COVID-19 vaccination influences subtypes of γδ-T cells during pregnancy. Front Immunol 2022; 13:900556. [PMID: 36311780 PMCID: PMC9597631 DOI: 10.3389/fimmu.2022.900556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Up to now, there has been insufficient clinical data to support the safety and effects of vaccination on pregnancy post COVID-19 vaccination. The γδ-T cells are considered an important component in the immune system to fight against viral infection and exhibit critical roles throughout the pregnancy period. However, the immunological roles of γδ-T cells in pregnant women with the COVID-19 vaccination remain unclear. Therefore, the objective of this study is to investigate the alteration of frequency and expression pattern of activation receptors and inhibitory receptors in γδ-T cell and its subsets in peripheral blood samples collected from non-pregnant vaccinated women, vaccinated pregnant women, and unvaccinated pregnant women. Our findings indicated that the frequency of CD3+γδ-T+ cells is lower in vaccinated pregnant women than in unvaccinated pregnant women. But no significant difference was found in the frequency of CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. In addition, there were no significant differences in the frequencies of CD3+γδ-T+Vδ1+T cells, CD3+γδ-T+Vδ2+T cells, CD3+γδ-T+Vδ1-Vδ2-T cells, and Vδ1+T cell/Vδ2+T cell ratio between the pregnant women with or without COVID-19 vaccination. Similar results were found after comparing non-pregnant and pregnant women who received the COVID-19 vaccine. However, there was a significant difference in the fraction of Vδ1-Vδ2-T cells in CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. The frequency of NKG2D+ cells in Vδ2+T cells was not significantly different in the vaccinated pregnant women when compared to that in unvaccinated pregnant women or non-pregnant vaccinated women. But the percentage of NKG2D+ cells in Vδ1+T cells was the lowest in pregnant women after COVID-19 vaccination. Furthermore, down-regulation of NKP46 and NKP30 were found in Vδ2+T and Vδ1+T cells in the vaccinated pregnant women, respectively. After the vaccination, up-regulation of PD-1 expression in Vδ1+T cells and Vδ2+T cells indicated γδ-T cells could respond to COVID-19 vaccination and display an exhausted phenotype following activation. In conclusion, COVID-19 vaccination influences subtypes of γδ-T cells during pregnancy, but the side effects might be limited. The phenotypical changes of Vδ1+T cells and Vδ2+T cells will be a promising predictor for evaluating the clinical outcome of the COVID-19 vaccine.
Collapse
Affiliation(s)
- Li Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Jiawei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, China
| | - Silin Jiang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Yan Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Rong Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Hang Yu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Qingqing Qiao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Mingjie Zhan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Zheng Xiang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Yan Xu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| |
Collapse
|
5
|
Yang S, Feng T, Ma C, Wang T, Chen H, Li L, Liu Y, Zhou B, Zhou R, Li H. Early Pregnancy Human Decidua Gamma/Delta T Cells Exhibit Tissue Resident and Specific Functional Characteristics. Mol Hum Reprod 2022; 28:6618535. [PMID: 35758607 DOI: 10.1093/molehr/gaac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
A successful pregnancy is a complicated process that builds upon two aspects of the maternal immune system that need to be balanced. As one of the indispensable groups of immune cell at the maternal-fetal interface, the decidual gamma/delta (γδ) T cells have attracted research attention in normal pregnancy and miscarriage. However, the role of γδ T cells in fetal growth remains poorly understood. Here we found that the γδ T cell population resident in decidua during early pregnancy was enriched and secreted growth factors including growth differentiation factor 15 (GDF15) and bone morphogenetic protein 1 (BMP1). A diminution in such growth factors may impair fetal development and result in fetal growth restriction. We also observed that early decidual γδ T cells exhibited stronger cytokine-secretion characteristics, but that their cytotoxic actions against A549 cells were weaker, compared with γδ T cells in peripheral blood mononuclear cells (PBMCs). In addition, the functional abilities of early decidual γδ T cells in promoting trophoblast cell proliferation, migration, invasion, and tube formation were also significantly more robust than in γδ T cells of PBMCs. These findings highlight the importance of γδ T cells in fetal growth and maternal immunotolerance during pregnancy, and show that they differ from γδ T cells in PBMCs. We thus recommend additional investigation in this research area to further elucidate a role for γδ T cells in pregnancy.
Collapse
Affiliation(s)
- Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - ChengYong Ma
- West China Hospital of Sichuan University, Chengdu, China
| | - Tiehao Wang
- West China Hospital of Sichuan University, Chengdu, China
| | - Hongqin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital,Sichuan University, Chengdu, China
| | - Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital,Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Han D, Sun P, Hu Y, Wang J, Hua G, Chen J, Shao C, Tian F, Darwish HYA, Tai Y, Yang X, Chang J, Ma Y. The Immune Barrier of Porcine Uterine Mucosa Differs Dramatically at Proliferative and Secretory Phases and Could Be Positively Modulated by Colonizing Microbiota. Front Immunol 2021; 12:750808. [PMID: 34917075 PMCID: PMC8670328 DOI: 10.3389/fimmu.2021.750808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.
Collapse
Affiliation(s)
- Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Sun
- Research and Development Department for Breeding Poultry Feed, Shandong Hekangyuan Biological Breeding Co., Ltd, Jinan, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoying Hua
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuyun Shao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fan Tian
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, Egypt
| | - Yurong Tai
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyu Chang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Huang C, Xiang Z, Zhang Y, Li Y, Xu J, Zhang H, Zeng Y, Tu W. NKG2D as a Cell Surface Marker on γδ-T Cells for Predicting Pregnancy Outcomes in Patients With Unexplained Repeated Implantation Failure. Front Immunol 2021; 12:631077. [PMID: 33777016 PMCID: PMC7988228 DOI: 10.3389/fimmu.2021.631077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maternal immune tolerance to semi-allogeneic fetus is essential for a successful implantation and pregnancy. Growing evidence indicated that low cytotoxic activity of γδ-T cells, which is mediated by activation and inhibitory receptors, is important for establishment of maternal immune tolerant microenvironment. However, the correlation between receptors on peripheral blood γδ-T cells, such as NKG2D, CD158a, and CD158b, and pregnancy outcome in patients with unexplained repeated implantation failure (uRIF) remains unclear. In this study, the association between the expression level of these receptors and pregnancy outcome in patients with uRIF was investigated. Thirty-eight women with uRIF were enrolled and divided into two groups: successful group and failed group, according to the pregnancy outcome on different gestational periods. The percentage of NKG2D+ γδ-T cells in lymphocytes was significantly higher in uRIF patients who had failed clinical pregnancy in subsequent cycle, compared with those who had successful clinical pregnancy. However, there were no differences about the frequencies of CD158a+ and CD158b+ γδ-T cells between the successful and failed groups. The receiver operating characteristic curve exhibited that the optimal cut-off value of NKG2D+ γδ-T cells was 3.24%, with 92.3% sensitivity and 66.7% specificity in predicting clinical pregnancy failure in uRIF patients. The patients with uRIF were further divided into two groups, group 1 (NKG2D+ γδ-T cells <3.24%) and group 2 (NKG2D+ γδ-T cells ≥3.24%), based on the cut-off value. The live birth rate of patients in the group 1 and group 2 were 61.5 and 28.0%, respectively. Kaplan-Meier survival curve further suggested that the frequency of NKG2D+ γδ-T cells in lymphocytes negatively correlated with live birth rate in patients with uRIF. In conclusion, our study demonstrated that the frequency of peripheral blood NKG2D+ γδ-T cells among lymphocytes is a potential predictor for pregnancy outcome in uRIF patients.
Collapse
Affiliation(s)
- Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yongnu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Hongzhan Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Yang C, Feng T, Lin F, Gong T, Yang S, Tao Y, Li H. Long noncoding RNA TANCR promotes γδ T cells activation by regulating TRAIL expression in cis. Cell Biosci 2020; 10:15. [PMID: 32082540 PMCID: PMC7014783 DOI: 10.1186/s13578-020-00383-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background γδ T cells are an important subset of T lymphocytes that play important roles in innate and adaptive immunity via the secretion of various cytokines. Previous studies have found that long noncoding RNAs (lncRNAs) are critical regulators that contribute to the development of immune cells. However, the functions of lncRNAs in the γδ T cells remains poorly studied. Results Here, we identified the novel function of lncRNA NONHSAT196558.1 in isopentenyl pyrophosphate (IPP)-activated and -expanded γδ T cells using RNA-seq. As it functioned as an activating noncoding RNA of tumor necrosis factor related apoptosis-inducing ligand (TRAIL), an important cytotoxic cytokine that expressed by γδ T cells in responding to various infectious agents, we named this lncRNA as TANCR. Secondly, the expression of TANCR was found to be positively correlated with TRAIL expression in IPP activated γδ T cells. In addition, TANCR was confirmed to localized both in nucleus and cytoplasm. Finally, a loss-of-function was conducted by using siRNA/ASO or CRISPR/Cas9 system to knockdown or knockout TANCR, and confirmed that silencing of TANCR inhibits TRAIL expression in several kinds of cells, including HEK293T cells, Jurkat cells, and primary γδ T cells. Conclusion These evidences demonstrate that TANCR play important roles in γδ T cell activation. Furthermore, TANCR may be involved in the cytotoxicity of γδ T cells. This study aims to further our understanding of the molecular mechanisms underlying lncRNA-mediated immune responses.
Collapse
Affiliation(s)
- Chuan Yang
- 1Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, No. 17, South Renmin Rd, Chengdu, 610000 China
| | - Ting Feng
- 1Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, No. 17, South Renmin Rd, Chengdu, 610000 China
| | - Fang Lin
- 1Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, No. 17, South Renmin Rd, Chengdu, 610000 China
| | - Tinxiang Gong
- Chengdu Blood Center, No. 3, East Yvjie Rd, Chengdu, 61000 China
| | - Shuo Yang
- 1Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, No. 17, South Renmin Rd, Chengdu, 610000 China
| | - Yuhong Tao
- 3Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, South Renmin Rd, Chengdu, 610000 China
| | - Hong Li
- 1Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, No. 17, South Renmin Rd, Chengdu, 610000 China
| |
Collapse
|
10
|
Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol 2019; 221:457-469. [PMID: 31288009 DOI: 10.1016/j.ajog.2019.07.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/01/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023]
Abstract
Research on the placenta as the interface between the mother and the fetus has been undertaken for some 150 years, and in 2 subsequent reviews, we attempted to summarize the situation. In the first part, we described the discovery of unique physiological modifications of the uteroplacental spiral arteries, enabling them to cope with a major increase in blood flow necessary to ensure proper growth of the fetus. These consist of an invasion of the arterial walls by trophoblast and a progressive disappearance of its normal structure. Researchers then turned to the pathophysiology of the placental bed and in particular to its maternal vascular tree. This yielded vital information for a better understanding of the so-called great obstetrical syndromes (preeclampsia, fetal growth restriction, premature labor and delivery, placenta accreta). Systematic morphological investigations of the uteroplacental vasculature showed that preeclampsia is associated with decreased or failed transformation of spiral arteries and the persistence of endothelial and smooth muscle cells in segments of their myometrial portion. Here we report on recent functional investigations of the placental bed, including in situ biophysical studies of uteroplacental blood flow and vascular resistance, and manipulation of uteroplacental perfusion. These new methodologies have provided a novel way of identifying pregnancies in which remodeling is impaired. In animals it is now possible to manipulate uteroplacental blood flow, leading to an enhancement of fetal growth; this opens the way to trials in abnormal human pregnancies. In this second part, we explored a new, extremely important area of research that deals with the role of specific subsets of leukocytes and macrophages in the placental bed. The human first-trimester decidua is rich in leukocytes called uterine natural killer cells. Both macrophages and uterine natural killer cells increase in number from the secretory endometrium to early pregnancy and play a critical role in mediating the process of spiral artery transformation by inducing initial structural changes. It seems therefore that vascular remodeling of spiral arteries is initiated independently of trophoblast invasion. Dysregulation of the immune system may lead to reproductive failure or pregnancy complications, and in this respect, recent studies have advanced our understanding of the mechanisms regulating immunological tolerance during pregnancy, with several mechanisms being proposed for the development of tolerance to the semiallogeneic fetus. In particular, these include several strategies by which the trophoblast avoids maternal recognition. Finally, an important new dimension is being explored: the likelihood that pregnancy syndromes and impaired uteroplacental vascular remodeling may be linked to future maternal and even the child's cardiovascular disease risk. The functional evidence underlying these observations will be discussed.
Collapse
|
11
|
Solano ME. Decidual immune cells: Guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol 2019; 60:3-16. [PMID: 31285174 DOI: 10.1016/j.bpobgyn.2019.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
During human pregnancy, trophoblast cells, the main cellular component of the placenta, invade deeply into uterine blood vessels and the modified endometrium (decidua). Hence, the maternal immune system must adapt to it. A successful pregnancy requires the tolerance of genetically different (allogenic) cells while the mother's immune competence is maintained. This tolerance is ensured through multiple overlapping and occasionally redundant innate and adaptive immune mechanisms. The present article aims to provide a broad overview on uterine immune cell components and the phenotypical and functional changes that they experience during pregnancy. Particularly, we seek to highlight very recent findings in functional adaptations to pregnancy in immune cell populations encountered in the decidua. These adaptations not only ensure tolerance to allogenic trophoblast cells but also promote optimal placental and fetal growth, simultaneously endeavoring to maintain immune surveillance to provide defense against infections.
Collapse
Affiliation(s)
- Maria Emilia Solano
- Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg Germany.
| |
Collapse
|
12
|
Changes of γδT cell subtypes during pregnancy and their influences in spontaneous abortion. J Reprod Immunol 2019; 131:57-62. [PMID: 30710888 DOI: 10.1016/j.jri.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 01/26/2023]
Abstract
A successful pregnancy is a complicated process that involves the precisely timed regulation of endocrine as well as immune system. Despite increasing knowledge about immunology in gestation, the studies of immune cells in endometrium and decidua are still fragmented. Dynamic data is lacking on the transition of pre-pregnancy endometrial lymphocytes to initial pregnancy states as well as to second/third-trimester status. Here, we determined the composition of Gamma delta (γδ) T cells in endometrium and decidua from women with normal pregnancy and unexplained spontaneous abortion. We found that the frequency of γδT cells is fluctuating over the course of pregnancy, and these changes were regulated by progesterone. Different from peripheral blood, Vδ1+ γδT cells accounted for the majority in endometrium and early-pregnancy decidua of healthy women, and endometrial stromal cells (ESCs) may involve in Vδ1/ Vδ2 shift directly. Moreover, an increase in the percentage of γδT cells with Vδ2 subset predominant in early-pregnancy decidua was associated with unexplained spontaneous abortion. Our results unraveled the precise timing of γδT cells occurring during pregnancy and the close relationship among endocrine, immune cells and pregnancy, which can further help understand and solve the problem of infertility and unexplained spontaneous abortion.
Collapse
|