1
|
Lan J, Zeng R, Li Z, Yang X, Liu L, Chen L, Sun L, Shen Y, Zhang T, Ding Y. Biomimetic Nanomodulators With Synergism of Photothermal Therapy and Vessel Normalization for Boosting Potent Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408511. [PMID: 39180264 DOI: 10.1002/adma.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Combination therapy using photothermal therapy (PTT) and immunotherapy is one of the most promising approaches for eliciting host immune responses to ablate tumors. However, its therapeutic efficacy is limited due to inefficient immune cell infiltration and cellular immune responses. In this study, a biomimetic immunostimulatory nanomodulator, Tm@PDA-GA (4T1 membrane@polydopamine-gambogic acid), with homologous targeting is developed. The 4T1 membrane (Tm) coating reduced immunogenicity and facilitated uptake of Tm@PDA-GA by tumor cells. Polydopamine (PDA) as a drug carrier can induce PTT under near-infrared ray (NIR) irradiation and immunogenic cell death (ICD) to activate dendritic cells (DCs). Moreover, Tm@PDA-GA on-demand released gambogic acid (GA) in an acidic tumor microenvironment, inhibiting the expression of heat shock proteins (HSPs) for synergetic chemo-photothermal anti-tumor activity and increasing the ICD of 4T1 cells. More importantly, GA can normalize the vessels via HIF-1α and VEGF inhibition to enhance immune infiltration and alleviate hypoxia stress. Thus, Tm@PDA-GA induced ICD, activated DCs, stimulated cytotoxic T cells, and suppressed Tregs. Moreover, Tm@PDA-GA is combined with anti-PD-L1 to further augment the tumor immune response and effectively suppress tumor growth and lung metastasis. In conclusion, biomaterial-mediated PTT combined with vessel normalization is a promising strategy for effective immunotherapy of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuguang Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Lin J, Wu Y, Liu G, Cui R, Xu Y. Advances of ultrasound in tumor immunotherapy. Int Immunopharmacol 2024; 134:112233. [PMID: 38735256 DOI: 10.1016/j.intimp.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.
Collapse
Affiliation(s)
- Jing Lin
- Department of Ultrasound, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, PR China.
| | - Yuwei Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Guangde Liu
- Department of Ultrasound, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, PR China
| | - Rui Cui
- Department of Ultrasonography, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China.
| |
Collapse
|
3
|
Naletova I, Tomasello B, Attanasio F, Pleshkan VV. Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy. Pharmaceutics 2023; 15:1346. [PMID: 37242588 PMCID: PMC10222518 DOI: 10.3390/pharmaceutics15051346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy is among the most effective approaches for treating cancer. One of the key aspects for successful immunotherapy is to achieve a strong and stable antitumor immune response. Modern immune checkpoint therapy demonstrates that cancer can be defeated. However, it also points out the weaknesses of immunotherapy, as not all tumors respond to therapy and the co-administration of different immunomodulators may be severely limited due to their systemic toxicity. Nevertheless, there is an established way through which to increase the immunogenicity of immunotherapy-by the use of adjuvants. These enhance the immune response without inducing such severe adverse effects. One of the most well-known and studied adjuvant strategies to improve immunotherapy efficacy is the use of metal-based compounds, in more modern implementation-metal-based nanoparticles (MNPs), which are exogenous agents that act as danger signals. Adding innate immune activation to the main action of an immunomodulator makes it capable of eliciting a robust anti-cancer immune response. The use of an adjuvant has the peculiarity of a local administration of the drug, which positively affects its safety. In this review, we will consider the use of MNPs as low-toxicity adjuvants for cancer immunotherapy, which could provide an abscopal effect when administered locally.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
4
|
Adam T, Becker TM, Chua W, Bray V, Roberts TL. The Multiple Potential Biomarkers for Predicting Immunotherapy Response-Finding the Needle in the Haystack. Cancers (Basel) 2021; 13:cancers13020277. [PMID: 33451015 PMCID: PMC7828488 DOI: 10.3390/cancers13020277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are being increasingly utilised in a variety of advanced malignancies. Despite promising outcomes in certain patients, the majority will not derive benefit and are at risk of potentially serious immune-related adverse events (irAEs). The development of predictive biomarkers is therefore critical to personalise treatments and improve outcomes. A number of biomarkers have shown promising results, including from tumour (programmed cell death ligand 1 (PD-L1), tumour mutational burden (TMB), stimulator of interferon genes (STING) and apoptosis-associated speck-like protein containing a CARD (ASC)), from blood (peripheral blood mononuclear cells (PBMCs), circulating tumour DNA (ctDNA), exosomes, cytokines and metal chelators) and finally the microbiome.
Collapse
Affiliation(s)
- Tamiem Adam
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
- Correspondence: (T.A.); (T.L.R.)
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- University of New South Wales, Sydney, NSW 2170, Australia
| | - Wei Chua
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
| | - Victoria Bray
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- University of New South Wales, Sydney, NSW 2170, Australia
- Correspondence: (T.A.); (T.L.R.)
| |
Collapse
|
5
|
Szubert S, Dziobek K, Wicherek Ł. High post-treatment serum soluble receptor-binding cancer antigen expressed on SiSo cells (sRCAS1) levels is associated with poor survival of patients with cervical cancer. J Obstet Gynaecol Res 2020; 46:499-506. [PMID: 31953916 DOI: 10.1111/jog.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022]
Abstract
AIM Receptor-binding cancer antigen expressed on SiSo cells (sRCAS1) is responsible for induction of selective immunosuppression. In addition, preclinical studies have shown that sRCAS1 levels may reflect cancer aggressiveness. The main aim of our study was to analyze pre- and post-treatment levels of sRCAS1 in the sera of patients treated for cervical cancer and to evaluate whether the levels change during treatment and their impact on patient prognosis. METHODS The study included 49 patients suffering from cervical cancer. The early stage cervical cancer patients (14) were treated surgically, while the advanced stage patients (35) underwent radiochemotherapy. Serum sRCAS1 levels were evaluated both before and after intervention with the use of the ELISA method. RESULTS We have found that median serum sRCAS1 levels of patients before intervention were not significantly different from the levels assessed after intervention. There were also no differences when pre- and post-treatment levels were compared within the group of early and of advanced stage patients. Serum sRCAS1 levels were not influenced by either the histopathological type of the tumor or the methods of treatment. High post-intervention sRCAS1 levels indicated shortened OS when compared to low sRCAS1 levels. Neither pre-intervention sRCAS1 levels nor the alteration in sRCAS1 levels during treatment were associated with patient prognosis. In multivariate analysis, post-treatment sRCAS1 levels and clinical stage of cervical cancer remained as independent predictors of survival. CONCLUSION High post-treatment serum sRCAS1 level in cervical cancer patients seems to be a negative prognostic factor for patient overall survival.
Collapse
Affiliation(s)
- Sebastian Szubert
- 2nd Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Konrad Dziobek
- Center of Oncology, Gynecologic Oncology Department, M. Sklodowska-Curie Memorial Institute, Krakow, Poland
| | - Łukasz Wicherek
- 2nd Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
6
|
Tu J, Zhang H, Yu J, Liufu C, Chen Z. Ultrasound-mediated microbubble destruction: a new method in cancer immunotherapy. Onco Targets Ther 2018; 11:5763-5775. [PMID: 30254469 PMCID: PMC6140758 DOI: 10.2147/ott.s171019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy provides a new treatment option for cancer. However, it may be therapeutically insufficient if only using the self-immune system alone to attack the tumor without any aiding methods. To overcome this drawback and improve the efficiency of therapy, new treatment methods are emerging. In recent years, ultrasound-mediated microbubble destruction (UMMD) has shown great potential in cancer immunotherapy. Using the combination of ultrasound and targeted microbubbles, molecules such as antigens or genes encoding antigens can be efficiently and specifically delivered into the tumor tissue. This review focuses on the recent progress in the application of UMMD in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| |
Collapse
|