1
|
Harvey AJ, Willson BE, Surrey ES, Gardner DK. Ovarian stimulation protocols: impact on oocyte and endometrial quality and function. Fertil Steril 2025; 123:10-21. [PMID: 39197516 DOI: 10.1016/j.fertnstert.2024.08.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Ovarian stimulation (OS) truly is an art. There exists a myriad of protocols used to achieve the same goal: stimulating the ovaries to produce more than one mature oocyte to improve the chance of a live birth. However, considerable debate remains as to whether OS impacts oocyte and endometrial quality to affect in vitro fertilization outcomes. Although "more is better" has long been considered the best approach for oocyte retrieval, this review challenges that notion by examining the influence of stimulation on oocyte quality. Likewise, improved outcomes after frozen blastocyst transfer suggest that OS perturbs endometrial preparation and/or receptivity, although correlating changes with implantation success remains a challenge. Therefore, the focus of this review is to summarize our current understanding of perturbations in human oocyte quality and endometrial function induced by exogenous hormone administration. We highlight the need for further research to identify more appropriate markers of oocyte developmental competence as well as those that define the roles of the endometrium in the success of assisted reproductive technology.
Collapse
Affiliation(s)
- Alexandra J Harvey
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bryn E Willson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai, Los Angeles, California
| | - Eric S Surrey
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Huang B, Li Z, Ren X, Bai J, Yue J, Dong X, Yang L, Ma B, Wang J, Zhou W, Wang X, Guo Y, Si K, Shi Z, Jin L. The density of the inner cell mass is a new indicator of the quality of a human blastocyst: a valid supplement to the Gardner scoring system. Hum Reprod 2024; 39:1942-1951. [PMID: 39013119 DOI: 10.1093/humrep/deae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
STUDY QUESTION Can the density of the inner cell mass (ICM) be a new indicator of the quality of the human blastocyst? SUMMARY ANSWER The densification index (DI) developed in this study can quantify ICM density and provide positive guidance for ploidy, pregnancy, and live birth. WHAT IS KNOWN ALREADY In evaluating the quality of ICM, reproductive care clinics still use size indicators without further evaluation. The main disadvantage of this current method is that the evaluation of blastocyst ICM is relatively rough and cannot meet the needs of clinical embryologists, especially when multiple blastocysts have the same ICM score, which makes them difficult to evaluate further. STUDY DESIGN, SIZE, DURATION This observational study included data from 2272 blastocysts in 1991 frozen-thawed embryo transfer (FET) cycles between January 2018 to November 2021 and 1105 blastocysts in 430 preimplantation genetic testing cycles between January 2019 and February 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS FET, ICSI, blastocyst culture, trophectoderm biopsy, time-lapse (TL) monitoring, and next-generation sequencing were performed. After preliminary sample size selection, the 11 focal plane images captured by the TL system were normalized and the spatial frequency was used to construct the DI of the ICM. MAIN RESULTS AND THE ROLE OF CHANCE This study successfully constructed a quantitative indicator DI that can reflect the degree of ICM density in terms of fusion and texture features. The higher the DI value, the better the density of the blastocyst ICM, and the higher the chances that the blastocyst was euploid (P < 0.001) and that pregnancy (P < 0.001) and live birth (P = 0.005) were reached. In blastocysts with ICM graded B and blastocysts graded 4BB, DI was also positively associated with ploidy, pregnancy, and live birth (P < 0.05). ROC analysis showed that combining the Gardner scoring system with DI can more effectively predict pregnancy and live births, when compared to using the Gardner scoring system alone. LIMITATIONS, REASONS FOR CAUTION Accurate calculation of the DI value places high demands on image quality, requiring manual selection of the clearest focal plane and exposure control. Images with the ICM not completely within the field of view cannot be used. The association between the density of ICM and chromosomal mosaicism was not evaluated. The associations between the density of ICM and different assisted reproductive technologies and different culture conditions in embryo laboratories were also not evaluated. Prospective studies are needed to further investigate the impact of ICM density on clinical outcomes. WIDER IMPLICATIONS OF THE FINDINGS ICM density assessment is a new direction in blastocyst assessment. This study explores new ways of assessing blastocyst ICM density and develops quantitative indicators and a corresponding qualitative evaluation scheme for ICM density. The DI of the blastocyst ICM developed in this study is easy to calculate and requires only TL equipment and image processing, providing positive guidance for clinical outcomes. The qualitative evaluation scheme of ICM density can assist embryologists without TL equipment to manually evaluate ICM density. ICM density is a simple indicator that can be used in practice and is a good complement to the blastocyst scoring systems currently used in most centers. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research & Development Program of China (2021YFC2700603). The authors report no financial or commercial conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiyuan Dong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhong Wang
- Hariomed Innovation Research Center, Guangzhou, Guangdong, China
| | - Wenjing Zhou
- Hariomed Innovation Research Center, Guangzhou, Guangdong, China
| | - Xuefeng Wang
- Hariomed Innovation Research Center, Guangzhou, Guangdong, China
| | - Yaxian Guo
- Hariomed Innovation Research Center, Guangzhou, Guangdong, China
| | - Keyi Si
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhi Shi
- The Research Institute of Advanced Technologies, NingBo University, Ningbo, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gori S, Fernández L, Soczewski E, Schafir A, Castagnola L, Grasso E, Martínez G, Leirós CP, Ramhorst R. Embryo Quality Conditions the Secretory Profile of Tolerogenic Dendritic Cell DC-10 During the Peri-Implantation Period. Am J Reprod Immunol 2024; 92:e13891. [PMID: 38958250 DOI: 10.1111/aji.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
PROBLEM The decidualization process conditions monocytes to the immunosuppressive and tolerogenic dendritic cell (DC)-10 profile, a DC subset with high IL-10 production. Since the implantation process implies an embryo-endometrium-immune crosstalk, here we focused on the ability of embryonic soluble factors to modify decidual DC conditioning accordingly with its quality. METHOD OF STUDY Human endometrial stromal cell line (HESC) decidualized with medroxyprogesterone and dibutyryl-cAMP (Dec) was stimulated with human embryo-conditioned media (ECM), classified as normal (ND) or impaired developed (ID) for 48 h (n = 18/group). Monocytes isolated from six healthy women were differentiated to DCs with rhGM-CSF+rhIL-4 in the presence/absence of conditioned media (CM) from decidualized cells stimulated with ECM or nontreated. RESULTS We found that decidualized cells stimulated with ECM sustain a myeloid regulatory cell profile on monocyte-derived culture with increased frequency of CD1a-CD14+ and CD83+CD86low cells. ND-Dec sustained the higher expression of the DC-10 markers, HLA-G and IL-10 whereas ID-Dec diminished IL-10 production (ID-Dec: 135 ± 37.4 vs. Dec: 223.3 ± 49.9 pg/mL, p < 0.05). The treatment with ECM-Dec sustained a higher IL-10 production and prevented the increase of CD83/CD86 after LPS challenge regardless of embryo quality. Notably, TNF-α production increased in ID-Dec cultures (ID-Dec: 475.1 ± 134.7 vs. Dec: 347.5 ± 98 pg/mL, p < 0.05). CONCLUSIONS Although remaining in a tolerogenic profile compatible with DC-10, DCs can differentially respond to decidual secreted factors based on embryo quality, changing their secretome. These results suggest that in the presence of arrested embryo, DCs could differentially shape the immunological microenvironment, contributing to arrested embryo clearance during the menstrual phase.
Collapse
Affiliation(s)
- Soledad Gori
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Laura Fernández
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Elizabeth Soczewski
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Ana Schafir
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Lara Castagnola
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Esteban Grasso
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Gustavo Martínez
- Fertilis Medicina Reproductiva, San Isidro, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| |
Collapse
|
4
|
Tamura I, Doi‐Tanaka Y, Takasaki A, Shimamura K, Yoneda T, Takasaki H, Shiroshita A, Fujimura T, Shirafuta Y, Sugino N. High incidence of decidualization failure in infertile women. Reprod Med Biol 2024; 23:e12580. [PMID: 38756693 PMCID: PMC11097126 DOI: 10.1002/rmb2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Decidualization is an important event for embryo implantation and successful pregnancy. Impaired decidualization leads to implantation failure and miscarriage. However, it is unclear how often decidualization failure occurs in infertile women. By analyzing the endometrium at late-secretory phase, we investigated the incidence and pathogenesis of decidualization failure among infertile women. Methods Endometrial dating was performed on the endometria obtained in the late-secretory phase from 33 infertile women. Endometrial dating of more than 2 days delay was taken as an indication of decidualization failure. The expression of essential transcription factors for decidualization (FOXO1, WT1, and C/EBPβ) was examined by immunohistochemistry. Results Among 32 cases, 20 cases (62.5%) showed decidualization failure. These patients tended to have a history of more frequent miscarriages than those without decidualization failure. The percentage of cells that immunostained positive for the expression of three transcription factors was significantly lower in the patients with decidualization failure than in those without decidualization failure. Serum progesterone levels measured in the mid- and late-secretory phase were not significantly different between the cases with and without decidualization failure. Conclusions The incidence of decidualization failure is high in infertile women.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Yumiko Doi‐Tanaka
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Akihisa Takasaki
- Department of Obstetrics and GynecologySaiseikai Shimonoseki General HospitalShimonosekiJapan
| | - Katsunori Shimamura
- Department of Obstetrics and GynecologySaiseikai Shimonoseki General HospitalShimonosekiJapan
| | - Toshihide Yoneda
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Hitomi Takasaki
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
5
|
Abstract
Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans. We also discuss the interactions between the embryo and the decidualising endometrium that regulate interstitial implantation and determine embryo fitness. Together, this Review highlights the precarious but adaptable nature of the implantation process.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-4610, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| |
Collapse
|
6
|
Vani V, Vasan SS, Adiga SK, Varsha SR, Seshagiri PB. Molecular regulators of human blastocyst development and hatching: Their significance in implantation and pregnancy outcome. Am J Reprod Immunol 2023; 89:e13635. [PMID: 36254379 DOI: 10.1111/aji.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023] Open
Abstract
In humans, blastocyst hatching and implantation events are two sequential, critically linked and rate-limiting events for a prospective pregnancy. These events are regulated by embryo-endometrium derived molecular factors which include hormones, growth factors, cytokines, immune-modulators, cell adhesion molecules and proteases. Due to poor viability of blastocysts, they fail to hatch and implant, leading to a low 'Live Birth Rates', majorly contributing to infertility. Here, embryo-derived biomarkers analysis plays a key role to assess potential biological viability of blastocysts which are capable of implantation and prospective pregnancy. Thus far, embryo-derived biomarkers examined are mostly immune-modulators which are thought to be associated with blastocyst development-implantation and progression of pregnancy, leading to live births. There is an urgent need to develop a quantitative and a reliable non-invasive approach aiding embryo selection for elective single embryo transfer and to minimize recurrent pregnancy loss and multiple pregnancies. In this article, we provide a comprehensive review on our current knowledge and understanding of potential embryo-derived molecular regulators, that is, biomarkers, of development of human blastocysts, their hatching and implantation. We discuss their potential implications in the assessment of blastocyst implantation potential and pregnancy outcome in terms of live births in humans.
Collapse
Affiliation(s)
- Venkatappa Vani
- Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics, Sir C.V. Raman Road, Bangalore, Karnataka, India
| | | | - Satish K Adiga
- Kasturba Medical College, Department of Clinical Embryology, Manipal, Karnataka, India
| | | | - Polani B Seshagiri
- Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics, Sir C.V. Raman Road, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Li Y, Chen ST, He YY, Li B, Yang C, Yang ZS, Yang ZM. The regulation and function of acetylated high-mobility group box 1 during implantation and decidualization. Front Immunol 2023; 14:1024706. [PMID: 36761729 PMCID: PMC9905834 DOI: 10.3389/fimmu.2023.1024706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction High-mobility group box 1 (HMGB1) is a non-histone nuclear protein and can be extracellularly secreted to induce sterile inflammation. Although uterine deletion of HMGB1 causes implantation and decidualization defects, how secreted HMGB1 is involved in mouse early pregnancy is still unknown. Methods Mouse models, mouse primary endometrial cells and human endometrial cell lines were used in this study. Both immunofluorescence and Western blot were performed to show the localization and relative level of HMGB1 and acetylated HMGB1, respectively. Relative mRNA levels were analyzed by real time RT-PCR. Results The secreted HMGB1 was detected in uterine lumen fluid in mouse periimplantation uterus. There is an obvious difference for secreted HMGB1 levels in uterine fluid between day 4 of pregnancy and day 4 of pseudopregnancy, suggesting the involvement of blastocysts during HMGB1 secretion. Trypsin is clearly detected in mouse blastocyst cavity and in the supernatant of cultured blastocysts. Trypsin significantly stimulates HB-EGF production through activating PAR2 and ADAM17. Uterine injection of PAR2 inhibitor into day 4 pregnant mice significantly reduces the number of implantation sites. HB-EGF released from luminal epithelium can induce mouse in vitro decidualization. The conditioned medium collected from trypsin-treated luminal epithelium is able to induce in vitro decidualization, which is suppressed by EGFR inhibitor. Intrauterine injection of glycyrrhizin (HMGB1 inhibitor) can significantly inhibit mouse embryo implantation. We also showed that exogenous HMGB1 released from human epithelial cells are able to induce human in vitro decidualization. Conclusion Trypsin can induce decidualization of stromal cells via PAR2-HMGB1-ADAM17-HB-EGF from luminal epithelium.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Zeng-Ming Yang,
| |
Collapse
|
8
|
Zhu GH, Liu L, Huang XX, Li DJ, Zhu YZ, Lu X, Du MR. The risk of intrauterine exposure to SARS-CoV-2 in female COVID-19 patients: A comprehensive review. Am J Reprod Immunol 2022; 89:e13528. [PMID: 35148017 PMCID: PMC9111367 DOI: 10.1111/aji.13528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a new type of coronavirus that has caused fatal infectious diseases and global spread. This novel coronavirus attacks target cells through the interaction of spike protein and angiotensin‐converting enzyme II (ACE2), leading to different clinical symptoms. However, for a successful pregnancy, a well‐established in‐uterine environment includes a specific immune environment, and multi‐interactions between specific cell types are prerequisites. The immune‐related changes in patients infected with novel coronavirus could interfere with the immune microenvironment in the uterus, leading to fetal loss. We first reviewed the intrauterine environment in the normal development process and the possible pregnancy outcome in the infection state. Then, we summarized the immune response induced by SARS‐CoV‐2 in patients and analyzed the changes in ACE2 expression in the female reproductive system. Finally, the present observational evidence of infection in pregnant women was also reviewed.
Collapse
Affiliation(s)
- Guo-Hua Zhu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xi-Xi Huang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xin Lu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mei-Rong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China.,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|