1
|
Mao K, Luo J, Ye J, Li L, Lin F, Zhou M, Wang D, Yu L, Zhu Z, Zuo D, Ye J. 2-D-gal Targets Terminal Fucosylation to Inhibit T-cell Response in a Mouse Skin Transplant Model. Transplantation 2023; 107:1291-1301. [PMID: 36367925 DOI: 10.1097/tp.0000000000004408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Organ allograft rejection is mainly driven by T-cell response. Studies have shown that fucosylation plays essential roles in the immune cell development and function. Terminal fucosylation inhibitor, 2-deoxy-D-galactose (2-D-gal), has been reported to suppress immunoresponse of macrophages, but its effects on T-cell-mediated immune response and transplant rejection have not been fully explored. METHODS The terminal fucosylation level in T cells was detected through ulex europaeus agglutinin-I staining. The consequences of 2-D-gal on murine T-cell proliferation, activation, cytokine secretion, and cell cycle were investigated in vitro. T-cell receptor signaling cascades were examined. Last, mouse skin transplant model was utilized to evaluate the regulatory effects of 2-D-gal on T-cell response in vivo. RESULTS The expression of fucosyltransferase1 was upregulated in CD3/CD28-activated T cells along with an elevation of α(1,2)-fucosylation level as seen by ulex europaeus agglutinin-I staining. Furthermore, 2-D-gal suppressed T-cell activation and proliferation, decrease cytokines production, arrest cell cycle, and prevent the activation of T-cell receptor signaling cascades. In vivo experiments showed that 2-D-gal limited T-cell proliferation to prolong skin allograft in mice. This was accompanied by lower level of inflammatory cytokines, and were comparable to those treated with Cyclosporin A. CONCLUSIONS Terminal fucosylation appears to play a role in T-cell activation and proliferation, and its inhibitor, 2-D-gal, can suppress T-cell activation and proliferation both in vitro and in vivo. In a therapeutic context, inhibiting terminal fucosylation may be a potential strategy to prevent allogeneic transplant rejection.
Collapse
Affiliation(s)
- Kaifeng Mao
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialiang Luo
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Lei Li
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Minjie Zhou
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yu
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junsheng Ye
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Uehara H, Minami K, Quante M, Nian Y, Heinbokel T, Azuma H, El Khal A, Tullius SG. Recall features and allorecognition in innate immunity. Transpl Int 2018; 31:6-13. [PMID: 28926127 PMCID: PMC7781186 DOI: 10.1111/tri.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/20/2017] [Accepted: 09/15/2017] [Indexed: 11/28/2022]
Abstract
Alloimmunity traditionally distinguishes short-lived, rapid and nonspecific innate immune responses from adaptive immune responses that are characterized by a highly specific response initiated in a delayed fashion. Key players of innate immunity such as natural killer (NK) cells and macrophages present the first-line defence of immunity. The concept of unspecific responses in innate immunity has recently been challenged. The discovery of pattern recognition receptors (PRRs) has demonstrated that innate immune cells respond in a semi-specific fashion through the recognition of pathogen-associated molecular patterns (PAMPs) representing conserved molecular structures shared by large groups of microorganisms. Although immunological memory has generally been considered as exclusive to adaptive immunity, recent studies have demonstrated that innate immune cells have the potential to acquire memory. Here, we discuss allospecific features of innate immunity and their relevance in transplantation.
Collapse
Affiliation(s)
- Hirofumi Uehara
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Koichiro Minami
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Markus Quante
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Yeqi Nian
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Timm Heinbokel
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Abdala El Khal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Abstract
The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.
Collapse
Affiliation(s)
- M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy.,Transplant Immunology Unit, Department of Transfusion Medicine, Padua University Hospital, Via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
4
|
Rayes A, Morrow AL, Payton LR, Lake KE, Lane A, Davies SM. A Genetic Modifier of the Gut Microbiome Influences the Risk of Graft-versus-Host Disease and Bacteremia After Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:418-22. [PMID: 26643031 DOI: 10.1016/j.bbmt.2015.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/21/2015] [Indexed: 12/12/2022]
Abstract
The human gut microbiome is involved in vital biological functions, such as maintenance of immune homeostasis and modulation of intestinal development and enhanced metabolic capabilities. Disturbances of the intestinal microbiota have been associated with development and progression of inflammatory conditions, including graft-versus-host disease (GVHD). The fucosyltransferase 2 (FUT2) gene produces an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. FUT2 genotype has been shown to modify the gut microbiome. We hypothesized that FUT2 genotype influences risk of GVHD and bacterial translocation after allogeneic hematopoietic stem cell transplantation (HSCT). FUT2 genotype was determined in 150 consecutive patients receiving allogeneic HSCT at our center. We abstracted clinical characteristics and outcomes from the transplantation database. Cumulative risk of any acute GVHD varied by FUT2 genotype, with decreased risk in those with A/A genotype and increased risk in those with G/G genotype. In contrast, the cumulative incidence of bacteremia was increased in those with A/A genotype. We conclude that the FUT2 genotype influences risk of acute GVHD and bacteremia after HSCT. We hypothesize that the mechanisms involve altered intestinal surface glycosylation and microbial composition but this requires additional study.
Collapse
Affiliation(s)
- Ahmad Rayes
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Ardythe L Morrow
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leslie R Payton
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kelly E Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|