1
|
Levêque M, Cassir N, Mathias F, Fevre C, Daviet F, Bermudez J, Brioude G, Peyron F, Reynaud-Gaubert M, Coiffard B. Refractory Pseudomonas aeruginosa Bronchopulmonary Infection After Lung Transplantation for Common Variable Immunodeficiency Despite Maximal Treatment Including IgM/IgA-Enriched Immunoglobulins and Bacteriophage Therapy. Infect Drug Resist 2023; 16:4265-4271. [PMID: 37409241 PMCID: PMC10319284 DOI: 10.2147/idr.s413900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Recipients transplanted for bronchiectasis in the context of a primary immune deficiency, such as common variable immunodeficiency, are at a high risk of severe infection in post-transplantation leading to poorer long-term outcomes than other transplant indications. In this report, we present a fatal case due to chronic Pseudomonas aeruginosa bronchopulmonary infection in a lung transplant recipient with common variable immunodeficiency despite successful eradication of an extensively drug-resistant (XDR) strain with IgM/IgA-enriched immunoglobulins and bacteriophage therapy. The fatal evolution despite a drastic adaptation of the immunosuppressive regimen and the maximal antibiotic therapy strategy raises the question of the contraindication of lung transplantation in such a context of primary immunodeficiency.
Collapse
Affiliation(s)
- Manon Levêque
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Nadim Cassir
- Department of Infectious Disease, APHM, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Fanny Mathias
- Department of Pharmacy, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Cindy Fevre
- Research and Development, Pherecydes Pharma, Romainville, France
| | - Florence Daviet
- Intensive Care Medicine, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Julien Bermudez
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Geoffrey Brioude
- Department of Thoracic Surgery and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Florence Peyron
- Department of Pharmacy, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| |
Collapse
|
2
|
Hernandez-Trujillo V, Zhou C, Scalchunes C, Ochs HD, Sullivan KE, Cunningham-Rundles C, Fuleihan RL, Bonilla FA, Petrovic A, Rawlings DJ, de la Morena MT. A Registry Study of 240 Patients with X-Linked Agammaglobulinemia Living in the USA. J Clin Immunol 2023:10.1007/s10875-023-01502-x. [PMID: 37219739 DOI: 10.1007/s10875-023-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE To understand the natural history and clinical outcomes for patients with X-linked agammaglobulinemia (XLA) in the United States utilizing the United States Immunodeficiency Network (USIDNET) patient registry. METHODS The USIDNET registry was queried for data from XLA patients collected from 1981 to 2019. Data fields included demographics, clinical features before and after diagnosis of XLA, family history, genetic mutation in Bruton's tyrosine kinase (BTK), laboratory findings, treatment modalities, and mortality. RESULTS Data compiled through the USIDNET registry on 240 patients were analyzed. Patient year of birth ranged from 1945 to 2017. Living status was available for 178 patients; 158/178 (88.8%) were alive. Race was reported for 204 patients as follows: White, 148 (72.5%); Black/African American, 23 (11.2%); Hispanic, 20 (9.8%); Asian or Pacific Islander, 6 (2.9%), and other or more than one race, 7 (3.4%). The median age at last entry, age at disease onset, age at diagnosis, and length of time with XLA diagnosis was 15 [range (r) = 1-52 years], 0.8 [r = birth-22.3 years], 2 [r = birth-29 years], and 10 [r = 1-56 years] years respectively. One hundred and forty-one patients (58.7%) were < 18 years of age. Two hundred and twenty-one (92%) patients were receiving IgG replacement (IgGR), 58 (24%) were on prophylactic antibiotics, and 19 (7.9%) were on immunomodulatory drugs. Eighty-six (35.9%) patients had undergone surgical procedures, two had undergone hematopoietic cell transplantation, and two required liver transplantation. The respiratory tract was the most affected organ system (51.2% of patients) followed by gastrointestinal (40%), neurological (35.4%), and musculoskeletal (28.3%). Infections were common both before and after diagnosis, despite IgGR therapy. Bacteremia/sepsis and meningitis were reported more frequently before XLA diagnosis while encephalitis was more commonly reported after diagnosis. Twenty patients had died (11.2%). The median age of death was 21 years (range = 3-56.7 years). Neurologic condition was the most common underlying co-morbidity for those XLA patients who died. CONCLUSIONS Current therapies for XLA patients reduce early mortality, but patients continue to experience complications that impact organ function. With improved life expectancy, more efforts will be required to improve post-diagnosis organ dysfunction and quality of life. Neurologic manifestations are an important co-morbidity associated with mortality and not yet clearly fully understood.
Collapse
Affiliation(s)
- Vivian Hernandez-Trujillo
- Division of Allergy and Immunology, Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| | - Chuan Zhou
- Division of General Pediatrics, School of Medicine, Center for Child Health, University of Washington, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Christopher Scalchunes
- Immune Deficiency Foundation. Immune Deficiency Foundation | (primaryimmune.org), Hanover, USA
| | - Hans D Ochs
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Kathleen E Sullivan
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramsay L Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, USA
| | | | - Aleksandra Petrovic
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - David J Rawlings
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98101, USA
| | - M Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA.
| |
Collapse
|
3
|
Renaud-Picard B, Tissot A, Burgel PR, Grenet D, de Miranda S, Coiffard B. [Lung transplantation for cystic fibrosis and bronchiectasis]. Rev Mal Respir 2023; 40 Suppl 1:e33-e41. [PMID: 36610851 DOI: 10.1016/j.rmr.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- B Renaud-Picard
- Service de pneumologie, groupe de transplantation pulmonaire, hôpitaux universitaires de Strasbourg, Strasbourg, France.
| | - A Tissot
- CHU Nantes, service de pneumologie, institut du Thorax, Nantes, France; Nantes université, Inserm, center for research in transplantation and translational immunology, UMR 1064, 44000 Nantes, France
| | - P R Burgel
- Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France; Pulmonary department, national cystic fibrosis reference centre, Cochin hospital, Assistance publique-Hôpitaux de Paris, Paris, France
| | - D Grenet
- Service de pneumologie, hôpital Foch, Suresnes, France
| | - S de Miranda
- Service de pneumologie, hôpital Foch, Suresnes, France
| | - B Coiffard
- Service de pneumologie, équipe de transplantation pulmonaire, centre hospitalo-universitaire Nord, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France
| |
Collapse
|
4
|
Clinical and genetic findings in two siblings with X-Linked agammaglobulinemia and bronchiolitis obliterans: a case report. BMC Pediatr 2022; 22:181. [PMID: 35382780 PMCID: PMC8981605 DOI: 10.1186/s12887-022-03245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background X-linked agammaglobulinemia (XLA) is an Inborn Errors of Immunity (IEI) characterized by pan-hypogammaglobulinemia and low numbers of B lymphocytes due to mutations in BTK gene. Usually, XLA patients are not susceptible to respiratory tract infections by viruses and do not present interstitial lung disease (ILD) such as bronchiolitis obliterans (BO) as a consequence of acute or chronic bacterial infections of the respiratory tract. Although many pathogenic variants have already been described in XLA, the heterogeneous clinical presentations in affected patients suggest a more complex genetic landscape underlying this disorder. Case presentation We report two pediatric cases from male siblings with X-Linked Agammaglobulinemia and bronchiolitis obliterans, a phenotype not often observed in XLA phenotype. The whole-exome sequencing (WES) analysis showed a rare hemizygous missense variant NM_000061.2(BTK):c.1751G>A(p.Gly584Glu) in BTK gene of both patients. We also identified a gain-of-function mutation in TGFβ1 (rs1800471) previously associated with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. TGFβ1 plays a key role in the regulation of immune processes and inflammatory response associated with pulmonary impairment. Conclusions Our report illustrates a possible role for WES in patients with known inborn errors of immunity, but uncommon clinical presentations, providing a personalized understanding of genetic basis, with possible implications in the identification of potential treatments, and prognosis for patients and their families. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03245-x.
Collapse
|
5
|
Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to Autosomal Forms of Disease. Clin Rev Allergy Immunol 2022; 63:22-35. [PMID: 34241796 PMCID: PMC8269404 DOI: 10.1007/s12016-021-08870-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Interruptions or alterations in the B cell development pathway can lead to primary B cell immunodeficiency with resultant absence or diminished immunoglobulin production. While the most common cause of congenital agammaglobulinemia is X-linked agammaglobulinemia (XLA), accounting for approximately 85% of cases, other genetic forms of agammaglobulinemia have been identified. Early recognition and diagnosis of these conditions are pivotal for improved outcomes and prevention of sequelae and complications. The diagnosis of XLA is often delayed, and can be missed if patient has a mild phenotype. The lack of correlation between phenotype and genotype in this condition makes management and predicting outcomes quite difficult. In contrast, while less common, autosomal recessive forms of agammaglobulinemia present at younger ages and with typically more severe clinical features resulting in an earlier diagnosis. Some diagnostic innovations, such as KREC level measurements and serum BCMA measurements, may aid in facilitating an earlier identification of agammaglobulinemia leading to prompt treatment. Earlier diagnosis may improve the overall health of patients with XLA.
Collapse
Affiliation(s)
| | - Vivian P. Hernandez-Trujillo
- Allergy and Immunology Care Center of South Florida, Miami, FL USA ,Division of Allergy and Immunology, Nicklaus Children’s Hospital, Miami, FL USA
| |
Collapse
|
6
|
Petrov AA, Adatia A, Jolles S, Nair P, Azar A, Walter JE. Antibody Deficiency, Chronic Lung Disease, and Comorbid Conditions: A Case-Based Approach. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3899-3908. [PMID: 34592394 DOI: 10.1016/j.jaip.2021.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
New emerging pulmonary phenotypes associated with antibody deficiency, such as neutrophilic asthma, frequent exacerbations of chronic obstructive pulmonary disease, and unexplained interstitial lung disease, particularly in younger adults, are discussed in this review through a case-based approach. Also discussed in similar fashion are antibody deficiency syndromes that lead to end-stage lung disease and the indications for lung transplantation in primary immunodeficiency disease. These challenging cases require timely and individualized strategies for genetic and immunologic diagnosis, decisions about therapeutic approaches, and long-term monitoring.
Collapse
Affiliation(s)
- Andrej A Petrov
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburg, Pa.
| | - Adil Adatia
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Jolles
- Immunodeficiency Center for Wales, University Hospital of Wales, Cardiff, Wales
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Antoine Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins Medicine, Baltimore, Md
| | - Jolan E Walter
- Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Massachusetts General Hospital for Children, Boston, Mass
| |
Collapse
|
7
|
Kennedy J, Walker A, Ellender CM, Steinfort K, Martin C, Smith C, Snell G, Whitford H. Outcomes Of Non-Cystic Fibrosis Related Bronchiectasis Post Lung Transplantation. Intern Med J 2021; 52:995-1001. [PMID: 33656222 DOI: 10.1111/imj.15256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lung transplantation is a recognised treatment for end-stage lung disease due to bronchiectasis. Non-CF bronchiectasis and CF are often combined into one cohort, however outcomes for non-CF bronchiectasis patients varies between centres, and in comparison to those for CF. AIMS To compare lung transplantation mortality and morbidity of bronchiectasis (non-CF) patients to those with CF and other indications. METHODS Retrospective analysis of patients undergoing lung transplantation between 01 January 2008-31 December 2013. Time to and cause of lung allograft loss was censored on 01 April 2018. A case-note review was conducted on a sub-group of 78 patients, to analyse hospital admissions as a marker of morbidity. RESULTS 341 patients underwent lung transplantation, 22 (6%) had bronchiectasis compared to 69 (20%) with CF. The 5-year survival for the bronchiectasis group was 32%, compared to CF 69%, obstructive lung disease (OLD) 64%, pulmonary hypertension 62% and ILD 55% (p = 0.008). Lung allograft loss due to CLAD with predominant infection was significantly higher in the bronchiectasis group at 2 years. The rate of acute admissions was 2.24 higher in the bronchiectasis group when compared to OLD (p = 0.01). Patients with bronchiectasis spent 45.81 days in hospital per person year after transplantation compared with 18.21 days for CF. CONCLUSIONS Bronchiectasis patients in this study had a lower 5-year survival and poorer outcomes in comparison to other indications including CF. Bronchiectasis should be considered a separate entity to CF in survival analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Kennedy
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Australia.,School of Medicine, Dentistry and Health Science, Melbourne University, Melbourne, Australia.,Department of Respiratory and Sleep Medicine, Austin Hospital, Melbourne, Australia
| | - Anne Walker
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Australia.,Department of Thoracic Medicine, Royal Adelaide Hospital, South Australia, Australia
| | - Claire M Ellender
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Australia.,Department of Respiratory & Sleep Medicine, Princess Alexandra Hospital, Brisbane, Australia
| | - Kate Steinfort
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Australia
| | - Catherine Martin
- Pubic Health and Preventative Medicine, Monash University, Melbourne, Australia
| | - Catherine Smith
- Pubic Health and Preventative Medicine, Monash University, Melbourne, Australia
| | - Gregory Snell
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Australia
| | - Helen Whitford
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
8
|
Shillitoe BMJ, Gennery AR. An update on X-Linked agammaglobulinaemia: clinical manifestations and management. Curr Opin Allergy Clin Immunol 2020; 19:571-577. [PMID: 31464718 DOI: 10.1097/aci.0000000000000584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW X-linked agammaglobulinaemia (XLA) is a congenital defect of development of B lymphocytes leading to agammaglobulinaemia. It was one of the first primary immunodeficiencies described, but treatment has remained relatively unchanged over the last 60 years. This summary aims to outline the current outcomes, treatments and future research areas for XLA. RECENT FINDINGS Immunoglobulin therapy lacks IgA and IgM, placing patients at theoretical risk of experiencing recurrent respiratory tract infections and developing bronchiectasis despite best current therapy. Recent cohort studies from Italy and the USA conform that bronchiectasis remains a major burden for this group despite best current efforts. However, gene therapy offers a potential cure for these patients with proven proof of concept murine models. SUMMARY The potential limitations of current immunoglobulin therapy appear to be confirmed by recent cohort studies, and therefore further work in the development of gene therapy is warranted. Until this is available, clinicians should strive to reduce the diagnostic delay, regularly monitor for lung disease and individualize target immunoglobulin doses to reduce infection rates for their patients.
Collapse
Affiliation(s)
- Benjamin Martin James Shillitoe
- Institute of Cellular Medicine, Newcastle University.,Paediatric Immunology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne Hospital Trusts, Queen Victoria Road, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University.,Paediatric Immunology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne Hospital Trusts, Queen Victoria Road, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Patrawala M, Cui Y, Peng L, Fuleihan RL, Garabedian EK, Patel K, Guglani L. Pulmonary Disease Burden in Primary Immune Deficiency Disorders: Data from USIDNET Registry. J Clin Immunol 2020; 40:340-349. [PMID: 31919711 DOI: 10.1007/s10875-019-00738-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Pulmonary manifestations are common in patients with primary immunodeficiency disorders (PIDs) but the prevalence, specific diseases, and their patterns are not well characterized. METHODS We conducted a retrospective analysis of pulmonary diseases reported in the database of the United States Immunodeficiency Network (USIDNET), a program of the Immune Deficiency Foundation. PIDs were categorized into 10 groups and their demographics, pulmonary diagnoses and procedures, infections, prophylaxis regimens, and laboratory findings were analyzed. RESULTS A total of 1937 patients with various PIDs (39.3% of total patients, 49.6% male, average age 37.9 years (SD = 22.4 years)) were noted to have a pulmonary disease comorbidity. Pulmonary diseases were categorized into broad categories: airway (86.8%), parenchymal (18.5%), pleural (4.6%), vascular (4.3%), and other (13.9%) disorders. Common variable immune deficiency (CVID) accounted for almost half of PIDs associated with airway, parenchymal, and other pulmonary disorders. Pulmonary procedures performed in 392 patients were mostly diagnostic (77.3%) or therapeutic (16.3%). These patients were receiving a wide variety of treatments, which included immunoglobulin replacement (82.1%), immunosuppressive (32.2%), anti-inflammatory (12.7%), biologic (9.3%), and cytokine (7.6%)-based therapies. Prophylactic therapy was being given with antibiotics (18.1%), antifungal (3.3%), and antiviral (2.2%) medications, and 7.1% of patients were on long-term oxygen therapy due to advanced lung disease. CONCLUSIONS Pulmonary manifestations are common in individuals with PID, but long-term pulmonary outcomes are not well known in this group of patients. Further longitudinal follow-up will help to define long-term prognosis of respiratory comorbidities and optimal treatment modalities.
Collapse
Affiliation(s)
- Meera Patrawala
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Ying Cui
- Department of Biostatistics, Emory University, Atlanta, GA, USA
| | - Limin Peng
- Department of Biostatistics, Emory University, Atlanta, GA, USA
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth K Garabedian
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiran Patel
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Lokesh Guglani
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, 2015 Uppergate Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Rademacher J, Ringshausen FC, Suhling H, Fuge J, Marsch G, Warnecke G, Haverich A, Welte T, Gottlieb J. Lung transplantation for non-cystic fibrosis bronchiectasis. Respir Med 2016; 115:60-5. [PMID: 27215505 DOI: 10.1016/j.rmed.2016.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Lung transplantation (LTx) is a well-established treatment for end-stage pulmonary disease. However, data regarding microbiology and outcome of patients with non-cystic fibrosis bronchiectasis (NCFB) after lung transplantation are limited. METHODS A retrospective analysis between August 1992 and September 2014 of all patients undergoing lung transplantation at our program of all recipients with a primary diagnosis of bronchiectasis was performed. Microbiology of sputum and bronchoalveolar lavage specimens, lung function and clinical parameters pre- and post-LTx were assessed retrospectively. Overall survival was compared to the total cohort of lung transplant recipients at institution. The survival and development of chronic lung allograft dysfunction (CLAD) was compared in patients with and without chronic Pseudomonas aeruginosa (PSA) infection after LTx. RESULTS 34 patients were transplanted. Median age at transplantation was 40 (IQR 33-52) years. The most common etiologies of bronchiectasis were idiopathic (41%), chronic obstructive pulmonary disease (COPD) (21%) and post-infectious (15%). The most common organism of pre- and posttransplant chronic airway infection was PSA. One-year Kaplan-Meier survival for patients with bronchiectasis was 85% and 5-year survival was 73% and similar to the entire cohort. All three patients with an associated diagnosis of immunodeficiency died due to infection and sepsis within the first year. Patients with persistent colonization with Pseudomonas aeruginosa after transplantation had worse long-term survival by trend and developed chronic lung allograft dysfunction more frequently. CONCLUSIONS Overall survival of patients with bronchiectasis after LTx is comparable to other underlying diseases. A reduced survival was observed in patients with the underlying diagnosis of immunodeficiency.
Collapse
Affiliation(s)
- Jessica Rademacher
- Dept. of Respiratory Medicine, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany.
| | - Felix C Ringshausen
- Dept. of Respiratory Medicine, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany; BREATH, Biomedical Research in End-stage and Obstructive Lung Disease, Hannover Medical School, Member of the German Center for Lung Research (DZL), Carl- Neuberg Str. 1, Germany
| | - Hendrik Suhling
- Dept. of Respiratory Medicine, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany
| | - Jan Fuge
- BREATH, Biomedical Research in End-stage and Obstructive Lung Disease, Hannover Medical School, Member of the German Center for Lung Research (DZL), Carl- Neuberg Str. 1, Germany
| | - Georg Marsch
- Dept. of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany
| | - Gregor Warnecke
- BREATH, Biomedical Research in End-stage and Obstructive Lung Disease, Hannover Medical School, Member of the German Center for Lung Research (DZL), Carl- Neuberg Str. 1, Germany; Dept. of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany
| | - Axel Haverich
- BREATH, Biomedical Research in End-stage and Obstructive Lung Disease, Hannover Medical School, Member of the German Center for Lung Research (DZL), Carl- Neuberg Str. 1, Germany; Dept. of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany
| | - Tobias Welte
- Dept. of Respiratory Medicine, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany; BREATH, Biomedical Research in End-stage and Obstructive Lung Disease, Hannover Medical School, Member of the German Center for Lung Research (DZL), Carl- Neuberg Str. 1, Germany
| | - Jens Gottlieb
- Dept. of Respiratory Medicine, Hannover Medical School, Carl- Neuberg Str. 1, Hannover, Germany; BREATH, Biomedical Research in End-stage and Obstructive Lung Disease, Hannover Medical School, Member of the German Center for Lung Research (DZL), Carl- Neuberg Str. 1, Germany
| |
Collapse
|
12
|
Erratum. Am J Transplant 2015; 15:2278. [PMID: 26198199 DOI: 10.1111/ajt.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|