1
|
Watanabe T, Juvet SC, Berra G, Havlin J, Zhong W, Boonstra K, Daigneault T, Horie M, Konoeda C, Teskey G, Guan Z, Hwang DM, Liu M, Keshavjee S, Martinu T. Donor IL-17 receptor A regulates LPS-potentiated acute and chronic murine lung allograft rejection. JCI Insight 2023; 8:e158002. [PMID: 37937643 PMCID: PMC10721268 DOI: 10.1172/jci.insight.158002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Stephen C. Juvet
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Berra
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Jan Havlin
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wenshan Zhong
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Tina Daigneault
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | | | - Chihiro Konoeda
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Grace Teskey
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - David M. Hwang
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Watanabe T, Juvet SC, Boonstra K, Guan Z, Joe B, Teskey G, Keshavjee S, Martinu T. Recipient bone marrow-derived IL-17 receptor A-positive cells drive allograft fibrosis in a mouse intrapulmonary tracheal transplantation model. Transpl Immunol 2021; 69:101467. [PMID: 34547417 DOI: 10.1016/j.trim.2021.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
IL-17A is implicated in the pathogenesis of chronic lung allograft dysfunction, which limits survival after lung transplantation. While many cells express the IL-17 receptor A (IL-17RA) which is the main receptor for IL-17A, the cellular targets of IL-17A in development of post-transplant fibrosis are unknown. The purpose of this study was to determine whether IL-17RA expression by donor or recipient structural or bone marrow (BM) cells is required for the development of allograft fibrosis in a mouse intrapulmonary tracheal transplantation (IPTT) model. BM chimeras were generated using C57BL/6 and IL-17RA-knockout mice. After engraftment, allogeneic IPTTs were performed using the chimeric and BALB/c mice as donors or recipients. This allowed us to assess the effect of IL-17RA deficiency in recipient BM, recipient structural, donor BM, or donor structural compartments separately. Tracheal grafts, the surrounding lung, and mediastinal lymph nodes were assessed 28 days after IPTT. Only recipient BM IL-17RA deficiency resulted in attenuation of tracheal graft obliteration. In the setting of recipient BM IL-17RA deficiency, T cells and neutrophils were decreased in mediastinal lymph nodes. Additionally, recipient BM IL-17RA deficiency was associated with increased B220+PNAd+ lymphoid aggregates, consistent with tertiary lymphoid organs, in proximity to the tracheal allograft. In this IPTT model, recipient BM-derived cells appear to be the primary targets of IL-17RA signaling during fibrotic obliteration of the tracheal allograft.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, University Health Network, Canada; Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, Canada; Division of Respirology, Department of Medicine, University of Toronto, Canada
| | - Kristen Boonstra
- Latner Thoracic Research Laboratories, University Health Network, Canada
| | - Zehong Guan
- Latner Thoracic Research Laboratories, University Health Network, Canada
| | - Betty Joe
- Latner Thoracic Research Laboratories, University Health Network, Canada
| | - Grace Teskey
- Latner Thoracic Research Laboratories, University Health Network, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, University Health Network, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, University Health Network, Canada; Division of Respirology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
3
|
Suzuki Y, Oishi H, Kanehira M, Matsuda Y, Hirama T, Noda M, Okada Y. Effect of CTLA4-Ig on Obliterative Bronchiolitis in a Mouse Intrapulmonary Tracheal Transplantation Model. Ann Thorac Cardiovasc Surg 2021; 27:355-365. [PMID: 33980752 PMCID: PMC8684841 DOI: 10.5761/atcs.oa.20-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: One of the serious problems after lung transplantation is chronic lung allograft dysfunction (CLAD). Most CLAD patients pathologically characterized by obliterative bronchiolitis (OB). Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4)-Ig is a combination protein of the Fc fragment of human IgG1 linked to the extracellular domain of CTLA4. The aim of the study was to examine the effect of CTLA4-Ig therapy on OB using a mouse intrapulmonary tracheal transplantation (IPTT) model. Methods: IPTT was performed between BALB/c (donor) and C57BL/6 (recipient) mice. Abatacept, which is a commercially available form of CTLA4-Ig, was intraperitoneally injected in recipient mice immediately after surgery, on days 7, 14, and 21. The mice in the control group received human IgG. Results: We performed semi-quantitative analysis of graft luminal obliteration at post-transplant day 28. We calculated the obliteration ratio of the lumen of the transplanted trachea in each case. The obliteration ratio was significantly lower in the CTLA4-Ig group than that in the control group (91.2 ± 2.1% vs. 47.8 ± 7.9%, p = 0.0008). Immunofluorescent staining revealed significantly decreased lymphoid neogenesis in the lung. Conclusions: CTLA4-Ig therapy attenuated tracheal obliteration with fibrous tissue in the mouse IPTT model. The attenuation of fibrous obliteration was correlated with the inhibition of lymphoid neogenesis.
Collapse
Affiliation(s)
- Yamato Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiko Kanehira
- Center for Life Science Research, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yasushi Matsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.,Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takashi Hirama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Watanabe T, Martinu T, Chruscinski A, Boonstra K, Joe B, Horie M, Guan Z, Bei KF, Hwang DM, Liu M, Keshavjee S, Juvet SC. A B cell-dependent pathway drives chronic lung allograft rejection after ischemia-reperfusion injury in mice. Am J Transplant 2019; 19:3377-3389. [PMID: 31365766 DOI: 10.1111/ajt.15550] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) limits long-term survival after lung transplant (LT). Ischemia-reperfusion injury (IRI) promotes chronic rejection (CR) and CLAD, but the underlying mechanisms are not well understood. To examine mechanisms linking IRI to CR, a mouse orthotopic LT model using a minor alloantigen strain mismatch (C57BL/10 [B10, H-2b ] → C57BL/6 [B6, H-2b ]) and isograft controls (B6→B6) was used with antecedent minimal or prolonged graft storage. The latter resulted in IRI with subsequent airway and parenchymal fibrosis in prolonged storage allografts but not isografts. This pattern of CR after IRI was associated with the formation of B cell-rich tertiary lymphoid organs within the grafts and circulating autoantibodies. These processes were attenuated by B cell depletion, despite preservation of allograft T cell content. Our observations suggest that IRI may promote B cell recruitment that drives CR after LT. These observations have implications for the mechanisms leading to CLAD after LT.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Miho Horie
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ke Fan Bei
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David M Hwang
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
SYK protects cardiocytes against anoxia and hypoglycemia-induced injury in ischemic heart failure. Mol Immunol 2017; 91:35-41. [DOI: 10.1016/j.molimm.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
|
6
|
Kawakami T, Ito K, Matsuda Y, Noda M, Sakurada A, Hoshikawa Y, Okada Y, Ogasawara K. Cytotoxicity of Natural Killer Cells Activated Through NKG2D Contributes to the Development of Bronchiolitis Obliterans in a Murine Heterotopic Tracheal Transplant Model. Am J Transplant 2017; 17:2338-2349. [PMID: 28251796 DOI: 10.1111/ajt.14257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Abstract
Bronchiolitis obliterans after lung transplantation is a major cause of postoperative mortality in which T cell-mediated immunity is known to play an important role. However, the exact contribution of natural killer (NK) cells, which have functions similar to CD8+ T cells, has not been defined. Here, we assessed the role of NK cells in murine bronchiolitis obliterans through heterotopic tracheal transplantations and found a greater percentage of NK cells in allografts than in isografts. Depletion of NK cells using an anti-NK1.1 antibody attenuated bronchiolitis obliterans in transplant recipients compared with controls. In terms of NK cell effector functions, an improvement in bronchiolitis obliterans was observed in perforin-KO recipient mice compared to wild type (WT). Furthermore, we found upregulation of NKG2D-ligand in allografts and demonstrated the significance of this using grafts expressing Rae-1, a murine NKG2D-ligand, which induced severe bronchiolitis obliterans in WT and Rag-1 KO recipients. This effect was ameliorated by injection of anti-NKG2D blocking antibody. Together, these results suggest that cytotoxicity resulting from activation of NK cells through NKG2D leads to the development of murine bronchiolitis obliterans.
Collapse
Affiliation(s)
- T Kawakami
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - K Ito
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Y Matsuda
- Department of Thoracic Surgery, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - M Noda
- Department of Thoracic Surgery, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - A Sakurada
- Department of Thoracic Surgery, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Y Hoshikawa
- Department of Thoracic Surgery, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Y Okada
- Department of Thoracic Surgery, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - K Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Salehi S, Wang X, Juvet S, Scott JA, Chow CW. Syk Regulates Neutrophilic Airway Hyper-Responsiveness in a Chronic Mouse Model of Allergic Airways Inflammation. PLoS One 2017; 12:e0163614. [PMID: 28107345 PMCID: PMC5249072 DOI: 10.1371/journal.pone.0163614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease characterized by airways hyper-responsiveness (AHR), reversible airway obstruction, and airway inflammation and remodeling. We previously showed that Syk modulates methacholine-induced airways contractility in naïve mice and in mice with allergic airways inflammation. We hypothesize that Syk plays a role in the pathogenesis of AHR; this was evaluated in a chronic 8-week mouse model of house dust mite (HDM)-induced allergic airways inflammation. Methods We used the Sykflox/flox//rosa26CreERT2 conditional Syk knock-out mice to assess the role of Syk prior to HDM exposure, and treated HDM-sensitized mice with the Syk inhibitor, GSK143, to evaluate its role in established allergic airways inflammation. Respiratory mechanics and methacholine (MCh)-responsiveness were assessed using the flexiVent® system. Lungs underwent bronchoalveolar lavage to isolate inflammatory cells or were frozen for determination of gene expression in tissues. Results MCh-induced AHR was observed following HDM sensitization in the Syk-intact (Sykflox/flox) and vehicle-treated BALB/c mice. MCh responsiveness was reduced to control levels in HDM-sensitized Sykdel/del mice and in BALB/c and Sykflox/flox mice treated with GSK143. Both Sykdel/del and GSK143-treated mice mounted appropriate immune responses to HDM, with HDM-specific IgE levels that were comparable to Sykflox/flox and vehicle-treated BALB/c mice. HDM-induced increases in bronchoalveolar lavage cell counts were attenuated in both Sykdel/del and GSK143-treated mice, due primarily to decreased neutrophil recruitment. Gene expression analysis of lung tissues revealed that HDM-induced expression of IL-17 and CXCL-1 was significantly attenuated in both Sykdel/del and GSK143-treated mice. Conclusion Syk inhibitors may play a role in the management of neutrophilic asthma.
Collapse
Affiliation(s)
- Sepehr Salehi
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaomin Wang
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Jeremy A. Scott
- Division of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Southern Ontario Center for Atmospheric Aerosol Research, Faculty of Applied Sciences, University of Toronto, Toronto, Ontario, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Health Sciences, Faculty of Health and Behavioural Sciences, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chung-Wai Chow
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Southern Ontario Center for Atmospheric Aerosol Research, Faculty of Applied Sciences, University of Toronto, Toronto, Ontario, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Multi-Organ Transplant Programme, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Sautès-Fridman C, Lawand M, Giraldo NA, Kaplon H, Germain C, Fridman WH, Dieu-Nosjean MC. Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Front Immunol 2016; 7:407. [PMID: 27752258 PMCID: PMC5046074 DOI: 10.3389/fimmu.2016.00407] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/22/2016] [Indexed: 01/03/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates that reflect lymphoid neogenesis occurring in tissues at sites of inflammation. They are detected in tumors where they orchestrate local and systemic anti-tumor responses. A correlation has been found between high densities of TLS and prolonged patient's survival in more than 10 different types of cancer. TLS can be regulated by the same set of chemokines and cytokines that orchestrate lymphoid organogenesis and by regulatory T cells. Thus, TLS offer a series of putative new targets that could be used to develop therapies aiming to increase the anti-tumor immune response.
Collapse
Affiliation(s)
- Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Myriam Lawand
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Nicolas A Giraldo
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Hélène Kaplon
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| |
Collapse
|