1
|
Ye Q, Xu G, Xue C, Pang S, Xie B, Huang G, Li H, Chen X, Yang R, Li W. Urinary SPP1 has potential as a non-invasive diagnostic marker for focal segmental glomerulosclerosis. FEBS Open Bio 2023; 13:2061-2080. [PMID: 37696527 PMCID: PMC10626280 DOI: 10.1002/2211-5463.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a type of chronic glomerular nephropathy showing characteristic glomerular sclerosis, diagnosed by kidney biopsy. However, it is difficult and expensive to monitor disease progression with repeated renal biopsy in clinical practice, and thus here we explored the feasibility of urine biomarkers as non-invasive diagnostic tools. We downloaded scRNA-seq datasets of 20 urine cell samples and 3 kidney tissues and obtained two gene lists encoding extracellular proteins for bioinformatic analysis; in addition, we identified key EP-Genes by immunohistochemical staining and performed bulk RNA sequencing with 12 urine samples. We report that urine cells and kidney cells were correlated. A total of 64 EP-Genes were acquired by intersecting genes of distal tubular cluster with extracellular proteins. Function enrichment analysis showed that EP-Genes might be involved in the immune response and extracellular components. Six key EP-Genes were identified and correlated with renal function. IMC showed that key EP-Genes were located mainly in tubules. Cross verification and examination of a urine RNAseq dataset showed that SPP1 had diagnostic potential for FSGS. The presence of urine SPP1 was primarily associated with macrophage infiltration in kidney, and the pathogenesis of FSGS may be related to innate immunity. Urinary cells seemed to be strongly similar to kidney cells. In summary, SPP1 levels reflect renal function and may have potential as a biomarker for non-invasive diagnosis of FSGS.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Guiling Xu
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Chao Xue
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shuting Pang
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Boji Xie
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Guanwen Huang
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Haoyu Li
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xuesong Chen
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rirong Yang
- Centre for Genomic and Personalized MedicineDepartment of ImmunologySchool of Basic Medical SciencesGuangxi Medical UniversityNanning530021China
| | - Wei Li
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
2
|
Sharaby I, Alksas A, Abou El-Ghar M, Eldeeb M, Ghazal M, Gondim D, El-Baz A. Biomarkers for Kidney-Transplant Rejection: A Short Review Study. Biomedicines 2023; 11:2437. [PMID: 37760879 PMCID: PMC10525551 DOI: 10.3390/biomedicines11092437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage renal failure, but the limited availability of donors and the risk of immune rejection pose significant challenges. Early detection of acute renal rejection is a critical step to increasing the lifespan of the transplanted kidney. Investigating the clinical, genetic, and histopathological markers correlated to acute renal rejection, as well as finding noninvasive markers for early detection, is urgently needed. It is also crucial to identify which markers are associated with different types of acute renal rejection to manage treatment effectively. This short review summarizes recent studies that investigated various markers, including genomics, histopathology, and clinical markers, to differentiate between different types of acute kidney rejection. Our review identifies the markers that can aid in the early detection of acute renal rejection, potentially leading to better treatment and prognosis for renal-transplant patients.
Collapse
Affiliation(s)
- Israa Sharaby
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (M.A.E.-G.); (M.E.)
| | - Mona Eldeeb
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (M.A.E.-G.); (M.E.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Dibson Gondim
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| |
Collapse
|
3
|
Filippone EJ, Gulati R, Farber JL. Noninvasive Assessment of the Alloimmune Response in Kidney Transplantation. Adv Chronic Kidney Dis 2021; 28:548-560. [PMID: 35367023 DOI: 10.1053/j.ackd.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Transplantation remains the optimal mode of kidney replacement therapy, but unfortunately long-term graft survival after 1 year remains suboptimal. The main mechanism of chronic allograft injury is alloimmune, and current clinical monitoring of kidney transplants includes measuring serum creatinine, proteinuria, and immunosuppressive drug levels. The most important biomarker routinely monitored is human leukocyte antigen (HLA) donor-specific antibodies (DSAs) with the frequency based on underlying immunologic risk. HLA-DSA should be measured if there is graft dysfunction, immunosuppression minimization, or nonadherence. Antibody strength is semiquantitatively estimated as mean fluorescence intensity, with titration studies for equivocal cases and for following response to treatment. Determination of in vitro C1q or C3d positivity or HLA-DSA IgG subclass analysis remains of uncertain significance, but we do not recommend these for routine use. Current evidence does not support routine monitoring of non-HLA antibodies except anti-angiotensin II type 1 receptor antibodies when the phenotype is appropriate. The monitoring of both donor-derived cell-free DNA in blood or gene expression profiling of serum and/or urine may detect subclinical rejection, although mainly as a supplement and not as a replacement for biopsy. The optimal frequency and cost-effectiveness of using these noninvasive assays remain to be determined. We review the available literature and make recommendations.
Collapse
|
4
|
Armelloni S, Mattinzoli D, Ikehata M, Alfieri C, Belingheri M, Moroni G, Cresseri D, Passerini P, Cerutti R, Messa P. Urinary mRNA Expression of Glomerular Podocyte Markers in Glomerular Disease and Renal Transplant. Diagnostics (Basel) 2021; 11:1499. [PMID: 34441433 PMCID: PMC8392587 DOI: 10.3390/diagnostics11081499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
The research of novel markers in urinary samples, for the description of renal damage, is of high interest, and several works demonstrated the value of urinary mRNA quantification for the search of events related to renal disease or affecting the outcome of transplant kidneys. In the present pilot study, a comparison of the urine mRNA expression of specific podocyte markers among patients who had undergone clinical indication to renal transplanted (RTx, n = 20) and native (N, n = 18) renal biopsy was performed. The aim of this work was to identify genes involved in podocytes signaling and cytoskeletal regulation (NPHS1, NPHS2, SYNPO, WT1, TRPC6, GRM1, and NEUROD) in respect to glomerular pathology. We considered some genes relevant for podocytes signaling and for the function of the glomerular filter applying an alternative normalization approach. Our results demonstrate the WT1 urinary mRNA increases in both groups and it is helpful for podocyte normalization. Furthermore, an increase in the expression of TRPC6 after all kinds of normalizations was observed. According to our data, WT1 normalization might be considered an alternative approach to correct the expression of urinary mRNA. In addition, our study underlines the importance of slit diaphragm proteins involved in calcium disequilibrium, such as TRPC6.
Collapse
Affiliation(s)
- Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Carlo Alfieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Mirco Belingheri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Gabrilella Moroni
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Donata Cresseri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Patrizia Passerini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Roberta Cerutti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Piergiorgio Messa
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| |
Collapse
|
5
|
Seo JW, Lee YH, Tae DH, Park SH, Moon JY, Jeong KH, Kim CD, Chung BH, Park JB, Kim YH, Seok J, Joo SH, Lee SH, Lee JS, Lee SH. Non-Invasive Diagnosis for Acute Rejection Using Urinary mRNA Signature Reflecting Allograft Status in Kidney Transplantation. Front Immunol 2021; 12:656632. [PMID: 34177898 PMCID: PMC8222723 DOI: 10.3389/fimmu.2021.656632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022] Open
Abstract
Urine has been regarded as a good resource based on the assumption that urine can directly reflect the state of the allograft or ongoing injury in kidney transplantation. Previous studies, suggesting the usefulness of urinary mRNA as a biomarker of acute rejection, imply that urinary mRNA mirrors the transcriptional activity of the kidneys. We selected 14 data-driven candidate genes through a meta-analysis and measured the candidate genes using quantitative PCR without pre-amplification in the cross-sectional specimens from Korean kidney transplant patients. Expression of 9/14 genes (CXCL9, CD3ϵ, IP-10, LCK, C1QB, PSMB9, Tim-3, Foxp3, and FAM26F) was significantly different between acute rejection and stable graft function with normal pathology and long-term graft survival in 103 training samples. CXCL9 was also distinctly expressed in allografts with acute rejection in in situ hybridization analysis. This result, consistent with the qPCR result, implies that urinary mRNA could reflect the magnitude of allograft injury. We developed an AR prediction model with the urinary mRNAs by a binary logistic regression and the AUC of the model was 0.89 in the training set. The model was validated in 391 independent samples, and the AUC value yielded 0.84 with a fixed manner. In addition, the decision curve analysis indicated a range of reasonable threshold probabilities for biopsy. Therefore, we suggest the urine mRNA signature could be used as a non-invasive monitoring tool of acute rejection for clinical application and could help determine whether to perform a biopsy in a recipient with increased creatinine.
Collapse
Affiliation(s)
- Jung-Woo Seo
- Department of Core Research Laboratory, Medical Science Institute, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.,Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Dong Hyun Tae
- School of Electrical Engineering, Korea University, Seoul, South Korea
| | - Seon Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Berm Park
- Department of Surgery, Sungkyunkwan University Samsung Hospital, Seoul, South Korea
| | - Yeong Hoon Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Inje University Busan Paik Hospital, Busan, South Korea
| | - Junhee Seok
- School of Electrical Engineering, Korea University, Seoul, South Korea
| | - Sun Hyung Joo
- Department of Surgery, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Seung Hwan Lee
- Department of Surgery, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jong Soo Lee
- Division of Nephrology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Lee YH, Seo JW, Kim M, Tae D, Seok J, Kim YG, Lee SH, Kim JS, Hwang HS, Jeong KH, Moon JY. Urinary mRNA Signatures as Predictors of Renal Function Decline in Patients With Biopsy-Proven Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:774436. [PMID: 34858345 PMCID: PMC8630698 DOI: 10.3389/fendo.2021.774436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
The clinical manifestations of diabetic kidney disease (DKD) are more heterogeneous than those previously reported, and these observations mandate the need for the recruitment of patients with biopsy-proven DKD in biomarker research. In this study, using the public gene expression omnibus (GEO) repository, we aimed to identify urinary mRNA biomarkers that can predict histological severity and disease progression in patients with DKD in whom the diagnosis and histologic grade has been confirmed by kidney biopsy. We identified 30 DKD-specific mRNA candidates based on the analysis of the GEO datasets. Among these, there were significant alterations in the urinary levels of 17 mRNAs in patients with DKD, compared with healthy controls. Four urinary mRNAs-LYZ, C3, FKBP5, and G6PC-reflected tubulointerstitial inflammation and fibrosis in kidney biopsy and could predict rapid progression to end-stage kidney disease independently of the baseline eGFR (tertile 1 vs. tertile 3; adjusted hazard ratio of 9.68 and 95% confidence interval of 2.85-32.87, p < 0.001). In conclusion, we demonstrated that urinary mRNA signatures have a potential to indicate the pathologic status and predict adverse renal outcomes in patients with DKD.
Collapse
Affiliation(s)
- Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Miji Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Donghyun Tae
- School of Electrical Engineering, Korea University, Seoul, South Korea
| | - Junhee Seok
- School of Electrical Engineering, Korea University, Seoul, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
- *Correspondence: Ju-Young Moon,
| |
Collapse
|
7
|
Augmented transcripts of kidney injury markers and renin angiotensin system in urine samples of overweight young adults. Sci Rep 2020; 10:21154. [PMID: 33273645 PMCID: PMC7713175 DOI: 10.1038/s41598-020-78382-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity has been firmly established as a major risk factor for common disease states including hypertension, type 2 diabetes mellitus, and chronic kidney disease. Increased body mass index (BMI) contributes to the activation of both the systemic and intra-tubular renin angiotensin systems (RAS), which are in turn associated with increased blood pressure (BP) and kidney damage. In this cross-sectional study, 43 subjects of normal or increased body weight were examined in order to determine the correlation of BMI or body fat mass (BFM) with blood pressure, fasting blood glucose (FBG), and urinary kidney injury markers such as interleukin-18 (IL-18), connective tissue growth factor (CTGF), neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 (KIM-1). Our results showed that: (1) subjects with increased body weight showed significantly higher BP, BFM, total body water and metabolic age; (2) BMI was positively correlated to both systolic (R2 = 0.1384, P = 0.01) and diastolic BP (R2 = 0.2437, P = 0.0008); (3) BFM was positively correlated to DBP (R2 = 0.1232, P = 0.02) and partially correlated to urine protein (R2 = 0.047, P = 0.12) and FBG (R2 = 0.07, P = 0.06); (4) overweight young adults had higher urinary mRNA levels of renin, angiotensinogen, IL-18 and CTGF. These suggest that BMI directly affects BP, kidney injury markers, and the activation of the intra-tubular RAS even in normotensive young adults. Given that BMI measurements and urine analyses are non-invasive, our findings may pave the way to developing a new and simple method of screening for the risk of chronic kidney disease in adults.
Collapse
|
8
|
Urinary Biomarkers for Diagnosis and Prediction of Acute Kidney Allograft Rejection: A Systematic Review. Int J Mol Sci 2020; 21:ijms21186889. [PMID: 32961825 PMCID: PMC7555436 DOI: 10.3390/ijms21186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023] Open
Abstract
Noninvasive tools for diagnosis or prediction of acute kidney allograft rejection have been extensively investigated in recent years. Biochemical and molecular analyses of blood and urine provide a liquid biopsy that could offer new possibilities for rejection prevention, monitoring, and therefore, treatment. Nevertheless, these tools are not yet available for routine use in clinical practice. In this systematic review, MEDLINE was searched for articles assessing urinary biomarkers for diagnosis or prediction of kidney allograft acute rejection published in the last five years (from 1 January 2015 to 31 May 2020). This review follows the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Articles providing targeted or unbiased urine sample analysis for the diagnosis or prediction of both acute cellular and antibody-mediated kidney allograft rejection were included, analyzed, and graded for methodological quality with a particular focus on study design and diagnostic test accuracy measures. Urinary C-X-C motif chemokine ligands were the most promising and frequently studied biomarkers. The combination of precise diagnostic reference in training sets with accurate validation in real-life cohorts provided the most relevant results and exciting groundwork for future studies.
Collapse
|
9
|
Abstract
Early detection of graft injury after kidney transplantation is key to maintaining long-term good graft function. Graft injury could be due to a multitude of factors including ischaemia reperfusion injury, cell or antibody-mediated rejection, progressive interstitial fibrosis and tubular atrophy, infections and toxicity from the immunosuppressive drugs themselves. The current gold standard for assessing renal graft dysfunction is renal biopsy. However, biopsy is usually late when triggered by a change in serum creatinine and of limited utility in diagnosis of early injury when histological changes are equivocal. Therefore, there is a need for timely, objective and non-invasive diagnostic techniques with good early predictive value to determine graft injury and provide precision in titrating immunosuppression. We review potential novel plasma and urine biomarkers that offer sensitive new strategies for early detection and provide major insights into mechanisms of graft injury. This is a rapidly expanding field, but it is likely that a combination of biomarkers will be required to provide adequate sensitivity and specificity for detecting graft injury.
Collapse
|
10
|
Lyu LL, Feng Y, Liu BC. Urinary Biomarkers for Chronic Kidney Disease with a Focus on Gene Transcript. Chin Med J (Engl) 2018; 130:2251-2256. [PMID: 28875962 PMCID: PMC5598339 DOI: 10.4103/0366-6999.213965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: In the upcoming era of precision medicine, searching for the early, noninvasive biomarkers has been the cornerstone and major challenge in the management of chronic kidney disease (CKD). Urine contains rich biological information which could be the ideal source for noninvasive biomarkers of CKD. This review will discuss the recent advance in urinary biomarker. Data Sources: This review was based on data in articles published in the PubMed databases up to June 20, 2017, with the following keywords: “Chronic kidney disease”, “Biomarker”, and “Urine”. Study Selection: Original articles and important reviews on urinary biomarker were selected for this review. Results: Urinary biomarker studies of CKD mainly focused on urine sediment, supernatant, and urinary extracellular vesicles. The gene transcript (microRNA [miRNA], messenger RNA [mRNA]) biomarkers have been recently shown with diagnostic potential for CKD reflecting kidney function and histological change. However, challenges regarding technique and data analysis need to be resolved before translation to clinic. Conclusions: Different fractions of urine contain rich information for biomarker discovery, among which urine (extracellular vesicles) mRNA, miRNA, might represent promising biomarker for CKD.
Collapse
Affiliation(s)
- Lin-Li Lyu
- Department of Nephrology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ye Feng
- Department of Nephrology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Bi-Cheng Liu
- Department of Nephrology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
11
|
Galichon P, Xu-Dubois YC, Buob D, Tinel C, Anglicheau D, Benbouzid S, Dahan K, Ouali N, Hertig A, Brocheriou I, Rondeau E. Urinary transcriptomics reveals patterns associated with subclinical injury of the renal allograft. Biomark Med 2018; 12:427-438. [PMID: 29697267 DOI: 10.2217/bmm-2017-0330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Subclinical pathological features in renal allograft biopsies predict poor outcomes, and noninvasive biomarkers are wanted. RNA quantification in urine predicts overt rejection. We hypothesized that a whole transcriptome analysis would be informative, even for discrete injury. PATIENTS & METHODS We performed an mRNA microarray with an optimized normalization method on 26 urinary cell pellets to study renal partial epithelial to mesenchymal transition (pEMT) in stable kidney allografts. RESULTS & CONCLUSION Unbiased pathway analysis revealed immune response as the main underlying biological process. In a subgroup of pristine biopsies, isolated pEMT was associated with reduced metabolic functions. Thus, pEMT translates into specific urinary mRNA patterns, in other words, increased inflammation and decreased metabolic functions. Deposited in Gene Expression Omnibus (GSE89652).
Collapse
Affiliation(s)
- Pierre Galichon
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S1155, Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, APHP, Paris, France
| | - Yi-Chun Xu-Dubois
- Institut National de la Santé et de la Recherche Médicale, UMR_S1155, Paris, France.,Service de Santé Publique, Hôpital Tenon, APHP, Paris, France
| | - David Buob
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S1155, Paris, France.,Service d'Anatomie Pathologique, Hôpital Tenon, APHP, Paris, France
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,RTRS « Centaure », Labex « Transplantex », Paris, France
| | | | - Karine Dahan
- Néphrologie et Dialyses, Hôpital Tenon, APHP, Paris, France
| | - Nacera Ouali
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, APHP, Paris, France
| | - Alexandre Hertig
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S1155, Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, APHP, Paris, France
| | - Isabelle Brocheriou
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S1155, Paris, France.,Service d'Anatomie Pathologique, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Eric Rondeau
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR_S1155, Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, APHP, Paris, France
| |
Collapse
|
12
|
Abstract
The concept that individuals with the same disease and a similar clinical presentation may have very different outcomes and need very different therapies is not novel. With the development of many innovative tools derived from the omics technologies, transplant medicine is slowly entering the era of precision medicine. Biomarkers are the cornerstone of precision medicine, which aims to integrate biomarkers with traditional clinical information and tailor medical care to achieve the best outcome for an individual patient. Here, we discuss the basic concepts of precision medicine and biomarkers, with a specific focus on progress in renal transplantation. We delineate the different types of biomarkers and provide a general assessment of the current applications and shortcomings of previously proposed biomarkers. We also outline the potential of precision medicine in transplantation. Moving toward precision medicine in the field of transplantation will require transplant physicians to embrace the increased complexity and expanded decision algorithms and therapeutic options that are associated with improved disease nosology.
Collapse
Affiliation(s)
- Maarten Naesens
- Department of Microbiology and Immunology, Laboratory of Nephrology, Katholieke Universiteit Leuven, University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, French National Institutes of Health and Medical Research U1151, Paris, France; .,Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Réseau Thématique de Recherche et de Soins Centaure, Paris, France.,Labex Transplantex, Paris, France; and.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
13
|
Suarez-Alvarez B, Rodriguez RM, Ruiz-Ortega M, Lopez-Larrea C. BET Proteins: An Approach to Future Therapies in Transplantation. Am J Transplant 2017; 17:2254-2262. [PMID: 28173625 DOI: 10.1111/ajt.14221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 01/25/2023]
Abstract
In order to develop new efficient therapies for organ transplantation, it is essential to acquire a comprehensive knowledge of the molecular mechanisms and processes, such as immune activation, chronic inflammation, and fibrosis, which lead to rejection and long-term graft loss. Recent efforts have shed some light on the epigenetic regulation associated with these processes. In this context, the bromo and extraterminal (BET) family of bromodomain proteins (BRD2, BRD3, BRD4, and BRDT) have emerged as major epigenetic players, connecting chromatin structure with gene expression changes. These proteins recognize acetylated lysines in histones and master transcription factors to recruit regulatory complex and, finally, modify the transcriptional program. Recent studies indicate that BET proteins are essential in the NF-kB-mediated inflammatory response, during the activation and differentiation of Th17-immune cells, and in profibrotic processes. Here, we review this new body of data and highlight the efficiency of BET inhibitors in several models of diseases. The promising results obtained from these preclinical models indicate that it may be time to translate these outcomes to the transplantation field, where epigenetics will be of increasing value in the coming years.
Collapse
Affiliation(s)
- B Suarez-Alvarez
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - R M Rodriguez
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M Ruiz-Ortega
- Cellular Biology of Renal Disease Laboratory, Nephrology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - C Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
14
|
Seo JW, Moon H, Kim SY, Moon JY, Jeong KH, Lee YH, Kim YG, Lee TW, Ihm CG, Kim CD, Chung BH, Kim YH, Lee SH. Both absolute and relative quantification of urinary mRNA are useful for non-invasive diagnosis of acute kidney allograft rejection. PLoS One 2017; 12:e0180045. [PMID: 28654700 PMCID: PMC5487057 DOI: 10.1371/journal.pone.0180045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/08/2017] [Indexed: 12/02/2022] Open
Abstract
Urinary mRNA analysis with three-gene set (18S rRNA, CD3ε, and IP-10) has been suggested as a non-invasive biomarker of acute rejection (AR) in kidney transplant recipients using quantitative real-time PCR (qPCR). Application of droplet digital PCR (ddPCR), which has been suggested to provide higher sensitivity, accuracy, and absolute quantification without standard curves, could be a useful method for the quantifying low concentration of urinary mRNA. We investigated the urinary expression of these three genes in Korean patients with kidney transplantation and also evaluated the usefulness of ddPCR. 90 urine samples were collected at time of allograft biopsy in kidney recipients (n = 67) and from patients with stable renal function more than 10 years (n = 23). Absolute quantification with both PCR system showed significant higher mRNA levels of CD3ε and IP-10 in AR patients compared with stable transplants (STA), but there was no difference in 18S rRNA expression across the patient groups. To evaluate discrimination between AR and STA, ROC curve analyses of CTOT-4 formula yielded area under the curve values of 0.72 (95% CI 0.60–0.83) and 0.77 (95% CI 0.66–0.88) for qPCR and ddPCR, respectively. However, 18S normalization of absolute quantification and relative quantification with 18S showed better discrimination of AR from STA than those of the absolute method. Our data indicate that ddPCR system without standard curve would be useful to determine the absolute quantification of urinary mRNA from kidney transplant recipients. However, comparative method also could be useful and convenient in both qPCR and ddPCR analysis.
Collapse
Affiliation(s)
- Jung-Woo Seo
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Haena Moon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Se-Yun Kim
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ju-Young Moon
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyung Hwan Jeong
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Ho Lee
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yang-Gyun Kim
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Tae-Won Lee
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Chun-Gyoo Ihm
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Division of Nephrology, Kyung-pook National University School of Medicine, Daegu, South Korea
| | - Byung Ha Chung
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Division of Nephrology, Busan Paik Hospital, College of Medicine, Inje University, Busan, South Korea
| | - Sang Ho Lee
- Department of Internal Medicine, Division of Nephrology, College of Medicine, Kyung Hee University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
15
|
Menon MC, Murphy B, Heeger PS. Moving Biomarkers toward Clinical Implementation in Kidney Transplantation. J Am Soc Nephrol 2017; 28:735-747. [PMID: 28062570 DOI: 10.1681/asn.2016080858] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term kidney transplant outcomes remain suboptimal, delineating an unmet medical need. Although current immunosuppressive therapy in kidney transplant recipients is effective, dosing is conventionally adjusted empirically on the basis of time after transplant or altered in response to detection of kidney dysfunction, histologic evidence of allograft damage, or infection. Such strategies tend to detect allograft rejection after significant injury has already occurred, fail to detect chronic subclinical inflammation that can negatively affect graft survival, and ignore specific risks and immune mechanisms that differentially contribute to allograft damage among transplant recipients. Assays and biomarkers that reliably quantify and/or predict the risk of allograft injury have the potential to overcome these deficits and thereby, aid clinicians in optimizing immunosuppressive regimens. Herein, we review the data on candidate biomarkers that we contend have the highest potential to become clinically useful surrogates in kidney transplant recipients, including functional T cell assays, urinary gene and protein assays, peripheral blood cell gene expression profiles, and allograft gene expression profiles. We identify barriers to clinical biomarker adoption in the transplant field and suggest strategies for moving biomarker-based individualization of transplant care from a research hypothesis to clinical implementation.
Collapse
Affiliation(s)
- Madhav C Menon
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Murphy
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter S Heeger
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|