1
|
Kahan RH, Abraham N, Lee HJ, Ettenger RB, Grimm PC, Reed EF, Reeves RK, Sarwal MM, Stempora LL, Warshaw BL, Kirk AD, Martinez OM, Chambers ET. Natural Killer Cell Phenotypes and Clinical Outcomes in Pediatric Kidney Transplantation. Pediatr Transplant 2024; 28:e14877. [PMID: 39508125 DOI: 10.1111/petr.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Natural killer (NK) cells have gained recognition for playing an integral role in both alloimmunity and protective immunity, particularly viral infection control, in solid organ transplantation. Using data from the Clinical Trials in Organ Transplantation in Children (CTOTC) study entitled, "Immune Development in Pediatric Transplantation," (NCT00951353), we aimed to identify NK cell phenotypes that were associated with viral infection versus alloreactive events during the first year after transplantation. We also examined the relationship between NK cells with 7-year patient and allograft survival using the Scientific Registry for Transplant Recipients (SRTR) database. METHODS A secondary analysis of peripheral blood mononuclear cells from 98 children aged 1-20 years old with kidney transplants was conducted using multiparameter flow cytometry for the following NK cell phenotypes: CD56bright, CD56dim, and CD56negative. We associated these phenotypes with either viral infection or alloimmunity (de novo donor-specific antibody (dnDSA) development or acute rejection), using Fine-Gray subdistribution hazard models for competing risks. Secondary outcomes included allograft and patient survival. RESULTS We demonstrated that specific baseline NK cell phenotypes obtained prior to transplantation may be associated with either viral infection or alloimmunity. An elevation in CD56dim frequency was associated with an increased risk of infection, while an increase in CD56negative absolute count was associated with an increased risk of an alloimmune event. NK cells were not associated with graft survival. CONCLUSIONS NK cell phenotyping may be a useful tool to help differentiate infectious from alloimmune risk.
Collapse
Affiliation(s)
- Riley H Kahan
- Pediatrics, Duke University, Durham, North Carolina, USA
- Surgery, Duke University, Durham, North Carolina, USA
| | - Nader Abraham
- Surgery, Duke University, Durham, North Carolina, USA
| | - Hui-Jie Lee
- Biostatistics, Duke University, Durham, North Carolina, USA
| | | | - Paul C Grimm
- School of Medicine, Stanford University, Palo Alto, California, USA
| | - Elaine F Reed
- Pediatrics, University of California, Los Angeles, California, USA
| | - R Keith Reeves
- Surgery, Duke University, Durham, North Carolina, USA
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
| | - Minnie M Sarwal
- Surgery, University of San Francisco, San Francisco, California, USA
| | | | | | - Allan D Kirk
- Surgery, Duke University, Durham, North Carolina, USA
| | - Olivia M Martinez
- Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Eileen T Chambers
- Pediatrics, Duke University, Durham, North Carolina, USA
- Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Tharmaraj D, Mulley WR, Dendle C. Current and emerging tools for simultaneous assessment of infection and rejection risk in transplantation. Front Immunol 2024; 15:1490472. [PMID: 39660122 PMCID: PMC11628869 DOI: 10.3389/fimmu.2024.1490472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Infection and rejection are major complications that impact transplant longevity and recipient survival. Balancing their risks is a significant challenge for clinicians. Current strategies aimed at interrogating the degree of immune deficiency or activation and their attendant risks of infection and rejection are imprecise. These include immune (cell counts, function and subsets, immunoglobulin levels) and non-immune (drug levels, viral loads) markers. The shared risk factors between infection and rejection and the bidirectional and intricate relationship between both entities further complicate transplant recipient care and decision-making. Understanding the dynamic changes in the underlying net state of immunity and the overall risk of both complications in parallel is key to optimizing outcomes. The allograft biopsy is the current gold standard for the diagnosis of rejection but is associated with inherent risks that warrant careful consideration. Several biomarkers, in particular, donor derived cell-free-DNA and urinary chemokines (CXCL9 and CXCL10), show significant promise in improving subclinical and clinical rejection risk prediction, which may reduce the need for allograft biopsies in some situations. Integrating conventional and emerging risk assessment tools can help stratify the individual's short- and longer-term infection and rejection risks in parallel. Individuals identified as having a low risk of rejection may tolerate immunosuppression wean to reduce medication-related toxicity. Serial monitoring following immunosuppression reduction or escalation with minimally invasive tools can help mitigate infection and rejection risks and allow for timely diagnosis and treatment of these complications, ultimately improving allograft and patient outcomes.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - William R. Mulley
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - Claire Dendle
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
3
|
Ahuja HK, Azim S, Maluf D, Mas VR. Immune landscape of the kidney allograft in response to rejection. Clin Sci (Lond) 2023; 137:1823-1838. [PMID: 38126208 DOI: 10.1042/cs20230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Preventing kidney graft dysfunction and rejection is a critical step in addressing the nationwide organ shortage and improving patient outcomes. While kidney transplants (KT) are performed more frequently, the overall number of patients on the waitlist consistently exceeds organ availability. Despite improved short-term outcomes in KT, comparable progress in long-term allograft survival has not been achieved. Major cause of graft loss at 5 years post-KT is chronic allograft dysfunction (CAD) characterized by interstitial fibrosis and tubular atrophy (IFTA). Accordingly, proactive prevention of CAD requires a comprehensive understanding of the immune mechanisms associated with either further dysfunction or impaired repair. Allograft rejection is primed by innate immune cells and carried out by adaptive immune cells. The rejection process is primarily facilitated by antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR). It is essential to better elucidate the actions of individual immune cell subclasses (e.g. B memory, Tregs, Macrophage type 1 and 2) throughout the rejection process, rather than limiting our understanding to broad classes of immune cells. Embracing multi-omic approaches may be the solution in acknowledging these intricacies and decoding these enigmatic pathways. A transition alongside advancing technology will better allow organ biology to find its place in this era of precision and personalized medicine.
Collapse
Affiliation(s)
- Harsimar Kaur Ahuja
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Daniel Maluf
- Program of Transplantation, School of Medicine, 29S Greene St, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| |
Collapse
|
4
|
Zhang J, Yang Y, Wei Y, Li L, Wang X, Ye Z. Hsa-miR-301a-3p inhibited the killing effect of natural killer cells on non-small cell lung cancer cells by regulating RUNX3. Cancer Biomark 2023:CBM220469. [PMID: 37302028 DOI: 10.3233/cbm-220469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most commonly diagnosed solid tumor. Natural killer (NK) cell-based immunotherapy is a promising anti-tumor strategy in various cancers including NSCLC. OBJECTIVE We aimed to investigate the specific mechanisms that regulate the killing effect of NK cells to NSCLC cells. METHODS Reverse transcription-quantitative PCR (RT-qPCR) assay was applied to measure the levels of hsa-microRNA (miR)-301a-3p and Runt-related transcription factor 3 (RUNX3). Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of IFN-γ and TNF-α. Lactate dehydrogenase assay was applied to detect the killing effect of NK cells. Dualluciferase reporter assay and RNA immunoprecipitation (RIP) assay were carried out to confirm the regulatory relationship between hsa-miR-301a-3p and RUNX3. RESULTS A low expression of hsa-miR-301a-3p was observed in NK cells stimulated by IL-2. The levels of IFN-γ and TNF-α were increased in NK cells of the IL-2 group. Overexpression of hsa-miR-301a-3p reduced the levels of IFN-γ and TNF-α as well as the killing effect of NK cells. Furthermore, RUNX3 was identified to be a target of hsamiR-301a-3p. hsa-miR-301a-3p suppressed the cytotoxicity of NK cells to NSCLC cells by inhibiting the expression of RUNX3. We found hsa-miR-301a-3p promoted tumor growth by suppressing the killing effect of NK cells against NSCLC cells in vivo. CONCLUSIONS Hsa-miR-301a-3p suppressed the killing effect of NK cells on NSCLC cells by targeting RUNX3, which may provide promising strategies for NK cell-based antitumor therapies.
Collapse
|
5
|
Soleimanian S, Yaghobi R, Karimi MH, Geramizadeh B, Roozbeh J. Altered Signatures of Plasma Inflammatory Proteins and Phonotypic Markers of NK Cells in Kidney Transplant Patients upon CMV Reactivation. Curr Microbiol 2022; 80:9. [PMID: 36445486 DOI: 10.1007/s00284-022-03116-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Cytomegalovirus (CMV) reactivation remains a common opportunistic infection with a prominent role in immune reconstitution in organ transplant recipients. CMVs as important drivers of natural killer (NK) cell differentiation has been indicated to prompt several phenotypic and functional alteration in these cells. We aimed to monitor the reconstitution of NK cells and change the signature of inflammatory proteins at the critical phase of CMV reactivation over six months after kidney transplantation. The present study indicated that CMV reactivation is associated with the development of IL-6, IL-10, and cytotoxic granules, including granzyme-B and granulysin, and the drop in the frequency of CD16 + NKG2A-CD57 + NK cell subset in kidney transplant recipients (KTRs) with reactivation versus non- reactivated ones. Our findings describe distinct immune signatures that emerged with CMV reactivation after kidney transplantation, which may be helpful in the timely management of CMV infection in KTRs.
Collapse
Affiliation(s)
- Saeede Soleimanian
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation. J Clin Med 2022; 11:jcm11206148. [PMID: 36294469 PMCID: PMC9605224 DOI: 10.3390/jcm11206148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003−2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36−23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28−52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011−1.128), p = 0.027), <0.010), deceased-donor transplantation (OR 2.18 (95% CI: 1.091−4.112), p = 0.027) and cold ischemia time (CIT) of the renal graft (OR 1.005 (95% CI: 1.001−1.01), p = 0.019) as clinically relevant prognostic factors associated with increased eRGI following KT. Further, neutrophils > 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31−195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97−63.18), p = 0.048), NK cells < 125 cells/μL on POD 3 (OR 6.97 (95% CI: 3.81−12.7), p < 0.01), basophils < 18.1 cells/μL on POD 10 (OR 3.45 (95% CI: 1.37−12.3), p = 0.02) and mDC < 4.7 cells/μL on POD 7 (OR 11.68 (95% CI: 1.85−73.4), p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT.
Collapse
|
7
|
Analysis of Expression of Inflammatory Factors and T Cell Lymphocyte in Patients with Orthopedic Trauma after Infection and Risk Factors. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5387005. [PMID: 36247854 PMCID: PMC9534650 DOI: 10.1155/2022/5387005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
Since most orthopedic patients' wounds are open in clinical practice, postoperative wound infection and other conditions are prone to occur, which pose varying degrees of threat to patients' prognosis and life and health. In this paper, a retrospective study is conducted on orthopedic trauma patients in our hospital from January 2020 to January 2022, including 98 patients with postoperative infection and 98 patients without infection, to detect and compare the levels of inflammatory factors and the level of T cell lymphatic group index difference. The ROC curve is drawn to analyze the diagnostic efficacy of postoperative infection indicators for patients with orthopedic trauma. The differences in baseline data between the two groups are compared. Multivariate Logistic regression analysis is performed on infection status. The experimental results show that the IL-6, IL-2, and CRP of the infection group of patients are significantly higher than uninfected group, and the CD3, CD4, and CD8 are significantly lower than uninfected group, which means that patients with infection after orthopedic trauma are in a disordered state of immune cytokines and function. Therefore, postoperative infection can be effectively assessed by early combined detection of the above indicators. In addition, the analysis of other clinical data showed that the operation time, the number of underlying diseases, and the surgical method are also risk factors for postoperative infection.
Collapse
|
8
|
lncRNA MANCR Inhibits NK Cell Killing Effect on Lung Adenocarcinoma by Targeting miRNA-30d-5p. Cell Microbiol 2022. [DOI: 10.1155/2022/4928635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. NK cells are imperative in spontaneous antitumor response of various cancers. Currently, lncRNAs are considered important modulators of the tumor microenvironment. This study investigated the molecular mechanism by which mitotically associated long noncoding RNA (MANCR) controls killing effect of NK cells on lung adenocarcinoma (LUAD) in the tumor microenvironment. Methods. The interplay between MANCR and miRNA-30d-5p was analyzed by bioinformatics. Expression of MANCR mRNA and miRNA-30d-5p was examined using qRT-PCR. Dual-luciferase reporter and RIP assays were utilized to verify the targeted relationship between MANCR and miRNA-30d-5p. To investigate regulation of MANCR/miRNA-30d-5p axis in NK cell killing effect on LUAD cells, western blot tested the protein level of perforin and granzyme B. ELISA determined the level of IFN-γ. CytoTox 96 Non-Radioactive Cytotoxicity Assay kit was applied for cytotoxicity detection of NK cells. Perforin and granzyme B fluorescence intensity was measured via immunofluorescence, and cell apoptosis levels were also revealed via flow cytometry. Results. MANCR was found to be upregulated, while miRNA-30d-5p expression was downregulated in LUAD tissues. Overexpression of MANCR in LUAD cells significantly reduced NK cell IFN-γ secretion, expression of granzyme B and perforin, and NK cell killing effect. In addition, MANCR could target and downregulate miRNA-30d-5p expression, and miRNA-30d-5p overexpression reversed the inhibition of NK cell killing effect caused by MANCR overexpression. Conclusion. MANCR inhibited the killing effect of NK cells on LUAD via targeting and downregulating miRNA-30d-5p and provided new ideas for antitumor therapy based on tumor microenvironment.
Collapse
|
9
|
Nagai K, Tawara T, Usui J, Ebihara I, Ishizu T, Kobayashi M, Maeda Y, Kobayashi H, Yamagata K. Levels of Soluble NKG2D Ligands and Cancer History in Patients Starting Hemodialysis. FRONTIERS IN NEPHROLOGY 2022; 2:875207. [PMID: 37674990 PMCID: PMC10479672 DOI: 10.3389/fneph.2022.875207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 09/08/2023]
Abstract
Background Immune dysfunction in hemodialysis patients is partially due to NK cell impairment. Ligands for NK activating receptors such as NKG2D expressed on cancer cells are involved in NK cell dysfunction and can lead to cancer development. Methods A cohort with 370 patients who started hemodialysis (HD) was investigated. Serum levels of soluble NKG2D ligands were measured. Cancer history was defined as any cancer diagnosis at induction and hospitalization and death due to cancer during 2-year follow-up. Results Sixty-two patients with and 308 patients without a cancer history showed mostly comparable biochemical parameters and uremic status at HD induction. Soluble MICB, ULBP-1, and ULBP-2 were detected in sera from most patients starting HD rather than MICA, the most representative NKG2D ligand. Measured NKG2D ligands, except for ULBP-1, were strongly correlated with each other. Correlations between NKG2D ligands and renal function were significant but modest in patients starting HD. Cancer history did not have any impact on levels of soluble NKG2D ligands. Discussion Even though this investigation lacked a control cohort and serial measurement of parameters, expression patterns of NKG2D ligands were comprehensively described, and the significance of cancer in patients starting HD was elucidated for the first time. Elevated levels of soluble NKG2D ligands occurred potentially due to complex mechanisms of oxidative stress, with insufficient metabolism and excretion in a uremic milieu, but they might mask the significance of elevations in serum levels of soluble NKG2DLs in patients with a cancer history.
Collapse
Affiliation(s)
- Kei Nagai
- Department of Nephrology, Hitachi General Hospital, Hitachi, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Tawara
- Department of Nephrology, Mito Kyodo General Hospital, Mito, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Itaru Ebihara
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Japan
| | - Takashi Ishizu
- Department of Nephrology, Ushiku Aiwa Hospital, Ushiku, Japan
| | - Masaki Kobayashi
- Department of Nephrology, Tokyo Medical University Kasumigaura Hospital, Ami, Japan
| | - Yoshitaka Maeda
- Department of Nephrology, JA Toride Medical Center, Toride, Japan
| | - Hiroaki Kobayashi
- Department of Nephrology, Ibaraki Prefectural Central Hospital, Kasama, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
11
|
Soleimanian S, Yaghobi R, Karimi MH, Geramizadeh B, Roozbeh J, Hossein Aghdaie M, Heidari M. Circulating NKG2C + NK cell expressing CD107a/LAMP-1 subsets at the onset of CMV reactivation in seropositive kidney transplant recipients. Transpl Immunol 2021; 69:101460. [PMID: 34492297 DOI: 10.1016/j.trim.2021.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Cytomegalovirus (CMV) infection contributes to morbidity and mortality among kidney transplant recipients. Natural killer (NK) cells can battle against CMV in kidney transplant recipients (KTRs). This study aimed to analyze the association between CMV reactivation and the proportion of NK cell subsets and their activity. In a cross-sectional study, ten CMV reactivated KTRs, and ten non- CMV reactivated ones were recruited. Ten matched healthy controls were also included in this cohort. The presence of anti-CMV-IgG Ab in both KTR subgroups from seronegative donors and healthy controls was determined. The frequency of distinct subsets of memory-like NK cells was analyzed through NKG2C, NKG2A, and CD57 using flow cytometry. The activity of NK cells was evaluated after stimulation via coculture with K562 cell line and then assessment of the frequency of CD107a and granzyme B. The mRNA levels of transcription factors, including T-bet, EAT, and inflammatory proteins, including IFN-γ and perforin contributing to NK cell activation, were also evaluated. Results showed a significantly lower frequency of NKG2C + NKG2A-CD57+ NK cell population in CMV-reactivated KTRs compared to non-reactivated ones (P-value:0.003). NKG2C+ NK cells expressing CD107a/LAMP-1 significantly was increased in CMV-reactivated KTRs compared to non-reactivated ones (P-value: 0.0002). The mRNA level of IFN-γ had a significant increase in the CMV-reactivated KTRs vs. nonreactive ones (P-value: 0.004). Finally, evaluation of the NK cells' cytotoxicity and activity through assessment of CD107a/LAMP-1 expression and IFN-γ secretion may be helpful for the identification of the risk of CMV reactivation in KTRs.
Collapse
Affiliation(s)
- Saeede Soleimanian
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mojdeh Heidari
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Du Y, Wang S, Zhang M, Chen B, Shen Y. Cells-Based Drug Delivery for Cancer Applications. NANOSCALE RESEARCH LETTERS 2021; 16:139. [PMID: 34478000 PMCID: PMC8417195 DOI: 10.1186/s11671-021-03588-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/03/2021] [Indexed: 05/04/2023]
Abstract
The application of cells as carriers to encapsulate chemotherapy drugs is of great significance in antitumor therapy. The advantages of reducing systemic toxicity, enhancing targeting and enhancing the penetrability of drugs to tumor cells make it have great potential for clinical application in the future. Many studies and advances have been made in the encapsulation of drugs by using erythrocytes, white blood cells, platelets, immune cells and even tumor cells. The results showed that the antitumor effect of cell encapsulation chemotherapy drugs was better than that of single chemotherapy drugs. In recent years, the application of cell-based vectors in cancer has become diversified. Both chemotherapeutic drugs and photosensitizers can be encapsulated, so as to achieve multiple antitumor effects of chemotherapy, photothermal therapy and photodynamic therapy. A variety of ways of coordinated treatment can produce ideal results even in the face of multidrug-resistant and metastatic tumors. However, it is regrettable that this technology is only used in vitro for the time being. Standard answers have not yet been obtained for the preservation of drug-loaded cells and the safe way of infusion into human body. Therefore, the successful application of drug delivery technology in clinical still faces many challenges in the future. In this paper, we discuss the latest development of different cell-derived drug delivery systems and the challenges it will face in the future.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Shujun Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Meilin Zhang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China.
| | - Yanfei Shen
- Department of Chemistry and Chemical Engineering, Southeast University School of Medicine, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Front Immunol 2021; 12:680480. [PMID: 34295330 PMCID: PMC8290519 DOI: 10.3389/fimmu.2021.680480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression. NK cell activation is tightly regulated through the integrated balance of signaling via inhibitory- and activating receptors. HLA class I molecules are critical regulators of NK cell activation through the interaction with inhibitory- as well as activating NK cell receptors, hence, HLA molecules act as critical immune checkpoints for NK cells. In the current review, we evaluate how NK cell alloreactivity and anti-viral immunity are regulated by NK cell receptors belonging to the KIR family and interacting with classical HLA class I molecules, or by NKG2A/C and LILRB1/KIR2DL4 engaging non-classical HLA-E or -G. In addition, we provide an overview of the methods to determine genetic variation in these receptors and their HLA ligands.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Nagai K. Dysfunction of natural killer cells in end-stage kidney disease on hemodialysis. RENAL REPLACEMENT THERAPY 2021; 7:8. [PMID: 33614163 PMCID: PMC7880510 DOI: 10.1186/s41100-021-00324-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are known to play an important role in defense against infection and tumors. Although there is no clear consensus, most studies have shown that the number and cytotoxicity of NK cells decreases in end-stage kidney disease (ESKD) patients undergoing hemodialysis. Uremic patients chronically suffer from oxidative stress, which could be responsible for downregulation of the activating receptors on NK cells and modulation of ligand expression for activating receptors. Theoretically, the reduced number of NK cells and decreased function might increase susceptibility to viral infections and cancer development in patients with ESKD. There is emerging evidence that NK cell numbers may be an outcome predictor in renal transplantation; however, the clinical significance of NK cell dysfunction in dialysis patients requires clarification. In this review, I describe NK cell number, cytotoxic activity, and activating mechanisms in the context of uremia and oxidative stress, which is anticipated to assist in elucidating the mechanisms underlying immunodeficiency in dialysis patients.
Collapse
Affiliation(s)
- Kei Nagai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Roberts MB, Fishman JA. Immunosuppressive Agents and Infectious Risk in Transplantation: Managing the "Net State of Immunosuppression". Clin Infect Dis 2020; 73:e1302-e1317. [PMID: 32803228 DOI: 10.1093/cid/ciaa1189] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Successful solid organ transplantation reflects meticulous attention to the details of immunosuppression, balancing risks for graft rejection against risks for infection. The 'net state of immune suppression' is a conceptual framework of all factors contributing to infectious risk. Assays which measure immune function in the immunosuppressed transplant recipient relative to infectious risk and allograft function are lacking. The best measures of integrated immune function may be quantitative viral loads to assess the individual's ability to control latent viral infections. Few studies address adjustment of immunosuppression during active infections. Thus, confronted with infection in solid organ recipients, the management of immunosuppression is based largely on clinical experience. This review examines known measures of immune function and the immunologic effects of common immunosuppressive drugs and available studies reporting modification of drug regimens for specific infections. These data provide a conceptual framework for the management of immunosuppression during infection in organ recipients.
Collapse
Affiliation(s)
- Matthew B Roberts
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Pontrelli P, Rascio F, Castellano G, Grandaliano G, Gesualdo L, Stallone G. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front Immunol 2020; 11:1454. [PMID: 32793200 PMCID: PMC7390843 DOI: 10.3389/fimmu.2020.01454] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer cells (NK) represent a population of lymphocytes involved in innate immune response. In addition to their role in anti-viral and anti-tumor defense, they also regulate several aspects of the allo-immune response in kidney transplant recipients. Growing evidence suggests a key role of NK cells in the pathogenesis of immune-mediated graft damage in kidney transplantation. Specific NK cell subsets are associated with operational tolerance in kidney transplant patients. On the other side, allo-reactive NK cells are associated with chronic antibody-mediated rejection and graft loss. Moreover, NK cells can prime the adaptive immune system and promote the migration of other immune cells, such as dendritic cells, into the graft leading to an increased allo-immune response and, eventually, to chronic graft rejection. Finally, activated NK cells can infiltrate the transplanted kidney and cause a direct graft damage. Interestingly, immunosuppression can influence NK cell numbers and function, thus causing an increased risk of post-transplant neoplasia or infection. In this review, we will describe how these cells can influence the innate and the adaptive immune response in kidney transplantation and how immunosuppression can modulate NK behavior.
Collapse
Affiliation(s)
- Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Marx S, Adam C, Mihm J, Weyrich M, Sester U, Sester M. A Polyclonal Immune Function Assay Allows Dose-Dependent Characterization of Immunosuppressive Drug Effects but Has Limited Clinical Utility for Predicting Infection on an Individual Basis. Front Immunol 2020; 11:916. [PMID: 32499781 PMCID: PMC7243819 DOI: 10.3389/fimmu.2020.00916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Dosage of immunosuppressive drugs after transplantation critically determines rejection and infection episodes. In this study, a global immune function assay was characterized among controls, dialysis-patients, and transplant-recipients to evaluate its utility for pharmacodynamic monitoring of immunosuppressive drugs and for predicting infections. Whole-blood samples were stimulated with anti-CD3/toll-like-receptor (TLR7/8)-agonist in the presence or absence of drugs and IFN-γ secretion was measured by ELISA. Additional stimulation-induced cytokines were characterized among T-, B-, and NK-cells using flow-cytometry. Cytokine-secretion was dominated by IFN-γ, and mainly observed in CD4, CD8, and NK-cells. Intra-assay variability was low (CV = 10.4 ± 6.2%), whereas variability over time was high, even in the absence of clinical events (CV = 65.0 ± 35.7%). Cyclosporine A, tacrolimus and steroids dose-dependently inhibited IFN-γ secretion, and reactivity was further reduced when calcineurin inhibitors were combined with steroids. Moreover, IFN-γ levels significantly differed between controls, dialysis-patients, and transplant-recipients, with lowest IFN-γ levels early after transplantation (p < 0.001). However, a single test had limited ability to predict infectious episodes. In conclusion, the assay may have potential for basic pharmacodynamic characterization of immunosuppressive drugs and their combinations, and for assessing loss of global immunocompetence after transplantation, but its application to guide drug-dosing and to predict infectious on an individual basis is limited.
Collapse
Affiliation(s)
- Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Claudia Adam
- Department of Internal Medicine IV, Saarland University, Homburg, Germany
| | - Janine Mihm
- Department of Internal Medicine IV, Saarland University, Homburg, Germany
| | - Michael Weyrich
- Department of Internal Medicine IV, Saarland University, Homburg, Germany
| | - Urban Sester
- Department of Internal Medicine IV, Saarland University, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Fernández-Ruiz M, López-Medrano F, Aguado JM. Predictive tools to determine risk of infection in kidney transplant recipients. Expert Rev Anti Infect Ther 2020; 18:423-441. [PMID: 32084326 DOI: 10.1080/14787210.2020.1733976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Infection represents a major complication after kidney transplantation (KT). Therapeutic drug monitoring is essentially the only approach for the adjustment of immunosuppression in current practice, with suboptimal results. The implementation of immune monitoring strategies may contribute to minimizing the risk of adverse events attributable to over-immunosuppression without compromising graft outcomes.Areas covered: The present review (based on PubMed/MEDLINE searches from database inception to November 2019) is focused on immune biomarkers with no antigen specificity (non-pathogen-specific), including serum levels of immunoglobulins and complement factors, peripheral blood lymphocyte subpopulations, soluble CD30, intracellular ATP production by stimulated CD4+ T-cells, and other cell-based immune assays. We also summarized recent advances in the use of replication kinetics of latent viruses to assess the functionality of T-cell immunity, with focus on the nonpathogenic anelloviruses. Finally, the composite risk scores reported in the literature are critically discussed.Expert opinion: Notable efforts have been made to develop an enlarging repertoire of immune biomarkers and prediction models, although most of them still lack technical standardization and external validation. Preventive interventions based on these tools (prolongation of prophylaxis, tapering of immunosuppression, or immunoglobulin replacement therapy in hypogammaglobulinemic patients) remain to be defined, ideally in the context of controlled trials.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (Imas12), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (Imas12), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (Imas12), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
19
|
Hemmersbach-Miller M, Wolfe CR, Schmader KE. Solid organ transplantation in older adults. Infectious and other age-related considerations. ACTA ACUST UNITED AC 2019; 3. [PMID: 34113803 PMCID: PMC8189398 DOI: 10.21926/obm.transplant.1901046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the U.S., older adults aged 65 or above comprise nearly one quarter of the solid organ transplant (SOT) waitlists, and the number of transplants performed in this age group continues to increase. There are no specific guidelines for the assessment and follow up of the older SOT candidate or recipient. Older adults are at increased risk of infectious complications after SOT. Despite these complications and even with the use of suboptimal donors, overall outcomes are favorable. We provide an overview to specific consideration as they relate to the older SOT candidate and recipient.
Collapse
Affiliation(s)
- Marion Hemmersbach-Miller
- Division of Infectious Diseases, Duke University Medical Center, Durham NC, USA.,Duke Clinical Research Institute, Durham NC, USA
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Kenneth E Schmader
- Division of Geriatrics, Duke University Medical Center, Durham NC, USA.,GRECC, Durham VA, Durham NC. USA
| |
Collapse
|