1
|
Franco-Acevedo A, Comes J, Mack JJ, Valenzuela NM. New insights into maladaptive vascular responses to donor specific HLA antibodies in organ transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1146040. [PMID: 38993843 PMCID: PMC11235244 DOI: 10.3389/frtra.2023.1146040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 07/13/2024]
Abstract
Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Johanna Comes
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, United States
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Bodén E, Andreasson J, Hirdman G, Malmsjö M, Lindstedt S. Quantitative Proteomics Indicate Radical Removal of Non-Small Cell Lung Cancer and Predict Outcome. Biomedicines 2022; 10:2738. [PMID: 36359256 PMCID: PMC9687227 DOI: 10.3390/biomedicines10112738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is associated with low survival rates, often due to late diagnosis and lack of personalized medicine. Diagnosing and monitoring NSCLC using blood samples has lately gained interest due to its less invasive nature. In the present study, plasma was collected at three timepoints and analyzed using proximity extension assay technology and quantitative real-time polymerase chain reaction in patients with primary NSCLC stages IA-IIIA undergoing surgery. Results were adjusted for patient demographics, tumor, node, metastasis (TNM) stage, and multiple testing. Major histocompatibility (MHC) class 1 polypeptide-related sequence A/B (MIC-A/B) and tumor necrosis factor ligand superfamily member 6 (FASLG) were significantly increased post-surgery, suggesting radical removal of cancerous cells. Levels of hepatocyte growth factor (HGF) initially increased postoperatively but were later lowered, potentially indicating radical removal of malignant cells. The levels of FASLG in patients who later died or had a relapse of NSCLC were lower at all three timepoints compared to surviving patients without relapse, indicating that FASLG may be used as a prognostic biomarker. The biomarkers were confirmed using microarray data. In conclusion, quantitative proteomics could be used for NSCLC identification but may also provide information on radical surgical removal of NSCLC and post-surgical prognosis.
Collapse
Affiliation(s)
- Embla Bodén
- Department of Clinical Sciences, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22363 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22362 Lund, Sweden
| | - Jesper Andreasson
- Department of Clinical Sciences, Lund University, 22362 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| | - Gabriel Hirdman
- Department of Clinical Sciences, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22363 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22362 Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences, Lund University, 22362 Lund, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22363 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22362 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| |
Collapse
|
3
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
4
|
Zhou L, Wolfson A, Vaidya AS. Noninvasive methods to reduce cardiac complications postheart transplant. Curr Opin Organ Transplant 2022; 27:45-51. [PMID: 34907978 DOI: 10.1097/mot.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Long-term success of heart transplantation is limited by allograft rejection and cardiac allograft vasculopathy (CAV). Classic management has relied on frequent invasive testing to screen for early features of rejection and CAV to allow for early treatment. In this review, we discuss new developments in the screening and prevention of allograft rejection and CAV. RECENT FINDINGS Newer noninvasive screening techniques show excellent sensitivity and specificity for the detection of clinically significant rejection. New biomarkers and treatment targets continue to be identified and await further studies regarding their utility in preventing allograft vasculopathy. SUMMARY Noninvasive imaging and biomarker testing continue to show promise as alternatives to invasive testing for allograft rejection. Continued validation of their effectiveness may lead to new surveillance protocols with reduced frequency of invasive testing. Furthermore, these noninvasive methods will allow for more personalized strategies to reduce the complications of long-term immunosuppression whereas continuing the decline in the overall rate of allograft rejection.
Collapse
Affiliation(s)
- Leon Zhou
- Department of Cardiology, Keck School of Medicine, Los Angeles, California, USA
| | | | | |
Collapse
|
5
|
Delta-like Canonical Notch Ligand 1 in Patients Following Liver Transplantation-A Secondary Analysis of a Prospective Cohort Study. Diagnostics (Basel) 2020; 10:diagnostics10110894. [PMID: 33142943 PMCID: PMC7693674 DOI: 10.3390/diagnostics10110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
Opportunistic bacterial infections are dreaded risks in patients following liver transplantation (LTX), even though patients receive an antibiotic prophylaxis. The timely recognition of such an infection may be delayed, as culture-based diagnostic methods are linked with a relevant gap in performance. We measured plasma concentrations of Delta-like canonical Notch ligand 1 (DLL1) in 93 adult patients at seven consecutive time points after liver transplantation and correlated the results to the occurrence of culture-proven bacterial infection or a complicated clinical course (composite endpoint of two or more complications: graft rejection or failure, acute kidney failure, acute lung injury, or 90-day mortality). Patients exhibited elevated plasma concentrations after liver transplantation over the whole 28 d observation time. Patients with bacterial infection showed increased DLL1 levels compared to patients without infection. Persistent elevated levels of DLL1 on day 7 and afterward following LTX were able to indicate patients at risk for a complicated course. Plasma levels of DLL1 following LTX may be useful to support an earlier detection of bacterial infections in combination with C-reactive protein (CRP) and procalcitonin (PCT), or they may lead to risk stratification of patients as a single marker for post-operative complications. (Clinical Trial Notation. German Clinical Trials Register: DRKS00005480).
Collapse
|
6
|
Prognosis of heart transplant patients in Mashhad University of Medical Sciences. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 17:33-38. [PMID: 32728361 PMCID: PMC7379209 DOI: 10.5114/kitp.2020.94189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/23/2020] [Indexed: 11/17/2022]
Abstract
Introduction Heart transplant is the ultimate treatment for patients with end-stage heart failure. Aim To assess 50 heart transplant patients for underlying diseases, transplantation outcome and mortality rate during a 5-year follow-up program. Material and methods Fifty heart transplant patients who underwent heart transplantation from 2012 to 2017 were assessed for underlying diseases, organ rejection, duration of hospitalization, extubation time, cardiac output and survival. Biopsy samples were obtained after surgery for evaluation of rejection. Results Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) were the most common underlying diseases with prevalence of 56% and 12%, respectively. Significant improvement in ejection fraction was observed following heart transplant. Minimum and maximum extubation and hospitalization times were 3–408 hours and 1–51 days, respectively. Organ rejection evaluation 10 days after heart transplantation revealed that 50% of patients did not show any rejection while 10% had severe rejection. At 30 days post-operatively the number of patients with grade III rejection decreased to 2% while 56% of patients had no sign of rejection. The 5-year survival rate was 66% while infection and arrhythmia were the most common causes of death. Conclusions DCM and ICM are considered the most prevalent underlying diseases in heart transplant candidates. Ejection fraction reached normal ranges following transplant, which provides good quality of life. Low incidence of severe acute rejection demonstrates the effectiveness of our immunosuppressive therapy. In the cases of increased rejection, the patient’s immunosuppressive regimen was re-assessed accordingly.
Collapse
|
7
|
Mormile R. Prevention and management of allograft rejection in heart transplantation: are miR-126-5p and miR-126-5p-expressing mesenchymal stem cell exosomes the Ariadne's thread? Cardiovasc Pathol 2020; 47:107208. [PMID: 32097731 DOI: 10.1016/j.carpath.2020.107208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Italy.
| |
Collapse
|
8
|
Bellumkonda L, Patel J. Recent advances in the role of mammalian target of rapamycin inhibitors on cardiac allograft vasculopathy. Clin Transplant 2019; 34:e13769. [DOI: 10.1111/ctr.13769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lavanya Bellumkonda
- Division of Cardiology Department of Medicine Yale School of Medicine New Haven CT USA
| | - Jignesh Patel
- Cedars‐Sinai Medical Center Smidt Heart Institute Los Angeles CA USA
| |
Collapse
|
9
|
Hildebrand D, Decker SO, Koch C, Schmitt FCF, Ruhrmann S, Schneck E, Sander M, Weigand MA, Brenner T, Heeg K, Uhle F. Host-Derived Delta-Like Canonical Notch Ligand 1 as a Novel Diagnostic Biomarker for Bacterial Sepsis-Results From a Combinational Secondary Analysis. Front Cell Infect Microbiol 2019; 9:267. [PMID: 31396491 PMCID: PMC6663974 DOI: 10.3389/fcimb.2019.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Sepsis is a life-threatening syndrome, resulting from a dysbalanced host response to infection. However, especially the early, pro-inflammatory immune response in sepsis is similar to other inflammatory conditions without infectious cause, e.g., trauma or surgery. This aspect challenges the value of current biomarkers for diagnosis, as these are often broadly induced. We earlier identified Delta-like Protein 1 (DLL1), a canonical Notch ligand, to be released from monocytes upon bacterial stimulation. Considering the importance of monocytes in the pathophysiology of sepsis, we hypothesized that this mechanism might occur also in the clinical setting and DLL1 might serve as a biomarker of life-threatening bacterial infection. Methods: We combined samples from three different studies, including subgroups of patients with sepsis (n = 80), surgical patients (n = 50), trauma patients (n = 36), as well as healthy controls (n = 50). We assessed plasma concentrations of DLL1 using ELISA. We performed Area-under-receiver-operator-curve (AUROC) analysis to evaluate the diagnostic performance of DLL1 compared to leucocytes, C-reactive protein (CRP), and procalcitonin (PCT). Results: Plasma concentrations of DLL1 were strongly elevated already at sepsis onset and maintained elevated until day 7. In contrast, neither surgical patients nor patients after severe trauma presented with elevated levels, while conventional biomarkers of inflammation (e.g., leucocytes and CRP), responded. AUROC analysis revealed a cut-off of 30 ng/ml associated with the best diagnostic performance, yielding a superior accuracy of 91% for DLL1, compared to 75, 79, and 81% for CRP, leucocytes, and PCT. Conclusion: DLL1 is a novel host-derived biomarker for the diagnosis of sepsis with a better performance compared to established ones, most likely due to its high robustness in non-infectious inflammatory responses. Clinical Trial Registration:POCSEP-Trial DRKS00008090; MIRSI DRKS00005463; SPRINT DRKS00010991.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian O Decker
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Felix C F Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sophie Ruhrmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Emmanuel Schneck
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | | | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|