1
|
Palacios-González C. Xenotransplantation and the way forward. JOURNAL OF MEDICAL ETHICS 2025; 51:149-150. [PMID: 39984196 DOI: 10.1136/jme-2025-110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
|
2
|
Kögel J, Schmoeckel M, Marckmann G. Who shall go first? A multicriteria approach to patient selection for first clinical trials of cardiac xenotransplantation. JOURNAL OF MEDICAL ETHICS 2025; 51:156-162. [PMID: 39244213 DOI: 10.1136/jme-2024-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
After achieving sustained graft functioning in animal studies, the next step in the progression of xenotransplantation towards clinical application is the initiation of the first clinical trials. This raises the question according to which criteria patients shall be selected for these trials. While the discussion regarding medical criteria has already commenced, ethical considerations must also be taken into account. This is essential, first, to establish a procedure that is ethically reasonable and justified. Second, it is a prerequisite for a publicly acceptable and comprehensible implementation. This paper outlines a multicriteria approach for the selection of patients in first-in-human clinical trials of cardiac xenotransplantation with four ethical criteria: medical need, capacity to benefit, patient choice and compliance (as an exclusion criterion). Consequently, these criteria identify a primary target group of patients who exhibit a high medical need for cardiac xenotransplantation, face a high risk of morbidity and mortality without an organ replcaement therapy, have a substantial chance of benefiting from xenotransplantation, thereby also enhancing the scientific value of the trial, and qualify for an allotransplant to have a real choice between participating in a first-in-human xenotransplantation trial and waiting for a human organ. A secondary group would include patients for whom only the first two criteria are met, that is, who have a high medical need and a good capacity to benefit from xenotransplantation but who have a restricted choice because they do not qualify for an allotransplant.
Collapse
Affiliation(s)
- Johannes Kögel
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Munich, Germany
| | | | - Georg Marckmann
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Seo BG, Lee IW, Kim HJ, Lee YJ, Kim O, Lee JH, Lee JH, Hwangbo C. Angiogenic properties and intercellular communication of differentiated porcine endothelial cells in vascular therapy. Sci Rep 2024; 14:22844. [PMID: 39354086 PMCID: PMC11445381 DOI: 10.1038/s41598-024-73584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Endothelial cell dysfunction can lead to various vascular diseases. Blood flow disorder is a common symptom of vascular diseases. Regenerative angiogenesis, which involves transplanting vascular cells or stem cells into the body to shape new vasculature, can be a good therapeutic strategy. However, there are several limitations to using autologous cells from the patients themselves. We sought to investigate the new vascular cells that can play a role in the formation of angiogenesis in vivo using stem cells from alternative animals suitable for cellular therapy. Porcine is an optimal animal model for xenotransplantation owing to its physiological similarity to humans. We used differentiated porcine endothelial cells (pECs) as a therapeutic strategy to restore vessel function. Differentiated pECs formed vessel-like structures in mice, distinguishing them from stem cells. MMPs activity and migration assays indicated that differentiated pECs possessed angiogenic potential. Tube formation and 3D spheroid sprouting assays further confirmed the angiogenic phenotype of the differentiated pECs. Immunofluorescence and immunoprecipitation analyses revealed claudin-mediated tight junctions and connexin 43-mediated gap junctions between human ECs and differentiated pECs. Additionally, the movement of small RNA from human ECs to differentiated pECs was observed under co-culture conditions. Our findings demonstrated the in vivo viability and angiogenetic potential of differentiated pECs and highlighted the potential for intercellular communication between human and porcine ECs. These results suggest that transplanted cells in vascular regeneration completed after cell therapy have the potential to achieve intercellular communication within the body.
Collapse
Affiliation(s)
- Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - In-Won Lee
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yeon-Ji Lee
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Okhwa Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jeong-Hyung Lee
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
4
|
Hurst DJ, Padilla L, Merlocco A, Rodger D, Bobier C, Gray WH, Sorabella R, Cooper DKC, Pierson RN. Pediatric Cardiac Xenotransplantation: Recommendations for the Ethical Design of Clinical Trials. Transplantation 2024; 108:e292-e300. [PMID: 38419158 DOI: 10.1097/tp.0000000000004968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
For children with complex congenital heart problems, cardiac allotransplantation is sometimes the best therapeutic option. However, availability of hearts for pediatric patients is limited, resulting in a long and growing waitlist, and a high mortality rate while waiting. Cardiac xenotransplantation has been proposed as one therapeutic alternative for neonates and infants, either in lieu of allotransplantation or as a bridge until an allograft becomes available. Scientific and clinical developments in xenotransplantation appear likely to permit cardiac xenotransplantation clinical trials in adults in the coming years. The ethical issues around xenotransplantation of the heart and other organs and tissues have recently been examined, but to date, only limited literature is available on the ethical issues that are attendant with pediatric heart xenotransplantation. Here, we summarize the ethical issues, focusing on (1) whether cardiac xenotransplantation should proceed in adults or children first, (2) pediatric recipient selection for initial xenotransplantation trials, (3) special problems regarding informed consent in this context, and (4) related psychosocial and public perception considerations. We conclude with specific recommendations regarding ethically informed design of pediatric heart xenotransplantation trials.
Collapse
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ
| | - Luz Padilla
- Department of Surgery, Division of Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Anthony Merlocco
- Department of Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Rodger
- Institute of Health and Social Care, School of Allied and Community Health, London South Bank University, London, United Kingdom
- Department of Psychological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Christopher Bobier
- Department of Theology and Philosophy, Saint Mary's University of Minnesota, Winona, MN
| | - William H Gray
- Department of Surgery, Division of Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Robert Sorabella
- Department of Surgery, Division of Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MN
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MN
| |
Collapse
|
5
|
Abstract
Xenotransplant patient selection recommendations restrict clinical trial participation to seriously ill patients for whom alternative therapies are unavailable or who will likely die while waiting for an allotransplant. Despite a scholarly consensus that this is advisable, we propose to examine this restriction. We offer three lines of criticism: (1) The risk-benefit calculation may well be unfavorable for seriously ill patients and society; (2) the guidelines conflict with criteria for equitable patient selection; and (3) the selection of seriously ill patients may compromise informed consent. We conclude by highlighting how the current guidance reveals a tension between the societal values of justice and beneficence.
Collapse
Affiliation(s)
- Christopher Bobier
- Department of Theology and Philosophy, Hendrickson Institute for Ethical Leadership, St. Mary's University of Minnesota, Winona, MN, USA
| | - Daniel Rodger
- Operating Department Practice, Institute of Health and Social Care, School of Allied and Community Health, London South Bank University, London, UK
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
6
|
Khush KK, Bernat JL, Pierson RN, Silverman HJ, Parent B, Glazier AK, Adams AB, Fishman JA, Gusmano M, Hawthorne WJ, Homan ME, Hurst DJ, Latham S, Park CG, Maschke KJ, Mohiuddin MM, Montgomery RA, Odim J, Pentz RD, Reichart B, Savulescu J, Wolpe PR, Wong RP, Fenton KN. Research opportunities and ethical considerations for heart and lung xenotransplantation research: A report from the National Heart, Lung, and Blood Institute workshop. Am J Transplant 2024; 24:918-927. [PMID: 38514013 PMCID: PMC11144553 DOI: 10.1016/j.ajt.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Xenotransplantation offers the potential to meet the critical need for heart and lung transplantation presently constrained by the current human donor organ supply. Much was learned over the past decades regarding gene editing to prevent the immune activation and inflammation that cause early organ injury, and strategies for maintenance of immunosuppression to promote longer-term xenograft survival. However, many scientific questions remain regarding further requirements for genetic modification of donor organs, appropriate contexts for xenotransplantation research (including nonhuman primates, recently deceased humans, and living human recipients), and risk of xenozoonotic disease transmission. Related ethical questions include the appropriate selection of clinical trial participants, challenges with obtaining informed consent, animal rights and welfare considerations, and cost. Research involving recently deceased humans has also emerged as a potentially novel way to understand how xeno-organs will impact the human body. Clinical xenotransplantation and research involving decedents also raise ethical questions and will require consensus regarding regulatory oversight and protocol review. These considerations and the related opportunities for xenotransplantation research were discussed in a workshop sponsored by the National Heart, Lung, and Blood Institute, and are summarized in this meeting report.
Collapse
Affiliation(s)
- Kiran K Khush
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
| | - James L Bernat
- Department of Neurology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Richard N Pierson
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Henry J Silverman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brendan Parent
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexandra K Glazier
- New England Donor Services, Waltham, Massachusetts, USA; School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Andrew B Adams
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jay A Fishman
- Transplant Infectious Disease and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Gusmano
- College of Health, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Wayne J Hawthorne
- Department of Surgery, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Mary E Homan
- Department of Theology and Ethics, CommonSpirit Health, Chicago, Illinois, USA
| | - Daniel J Hurst
- Department of Family Medicine, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Stephen Latham
- Interdisciplinary Center for Bioethics, Yale University, New Haven, Connecticut, USA
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Muhammad M Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert A Montgomery
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York, USA
| | - Jonah Odim
- Transplantation Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca D Pentz
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bruno Reichart
- Department of Cardiac Surgery, Ludwig-Maximillian University, Munich, Germany
| | - Julian Savulescu
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul Root Wolpe
- Center for Ethics and Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Renee P Wong
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathleen N Fenton
- Advanced Technologies and Surgery Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, and Department of Bioethics, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Cherukuru N, Athanasiadi A, LeMalefant R, Mancini D, Forrester A, Glovinsky D, Miski P, Harrison-Restelli C, Robinson C. Lessons learned from the first cardiac xenotransplant in a consciously consenting human: Psychiatric considerations and the impact of media exposure. Xenotransplantation 2023; 30:e12830. [PMID: 37864487 DOI: 10.1111/xen.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Affiliation(s)
- Nithya Cherukuru
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Argyro Athanasiadi
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Rachel LeMalefant
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - David Mancini
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Anique Forrester
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - David Glovinsky
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Pinar Miski
- Ascension Saint Agnes Hospital, Baltimore, Maryland, USA
| | - Catherine Harrison-Restelli
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Charles Robinson
- Department of Psychiatry, Division of Consultation-Liaison Psychiatry, University of Maryland Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Cooper DKC, Raza SS, Chaban R, Pierson RN. Shooting for the moon: Genome editing for pig heart xenotransplantation. J Thorac Cardiovasc Surg 2023; 166:973-980. [PMID: 35659123 PMCID: PMC10124774 DOI: 10.1016/j.jtcvs.2022.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
Gene-edited pigs could eventually provide organs that are safely and effectively protected from the human immune response without exogenous immunosuppression. Genome editing technology has revolutionized heart xenotransplantation and made transplantation of bioengineered pig hearts into humans a possibility. This first clinical application resulted from a tremendous amount of research. Dramatic early attempts of clinical cardiac xenotransplantation during the last century paved the way to modern xenotransplantation using bioengineered pig hearts. It appears that such genome-edited hearts will be most suitable for neonates and infants because of their immature immune system. The bioengineered pig heart may also be used as a bridge to human heart transplantation, avoiding the risk of thromboembolic events of durable ventricular assist devises in these young children. It is also intriguing to think that bioengineered hearts using pigs as a host may result in a new source of donor hearts that would not evoke the human immune response and minimize, if not eliminate, the need for immunosuppression. It this issue of the Journal, a group of experts led by Dr Cooper, whose personal work spans over 50 years of heart transplantation research, outline the current state of the genome editing of bioengineered hearts and discuss the prospects of clinical application.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | | | - Ryan Chaban
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
9
|
Konstantinov IE, Cooper DKC, Adachi I, Bacha E, Bleiweis MS, Chinnock R, Cleveland D, Cowan PJ, Fynn-Thompson F, Morales DLS, Mohiuddin MM, Reichart B, Rothblatt M, Roy N, Turek JW, Urschel S, West L, Wolf E. Consensus statement on heart xenotransplantation in children: Toward clinical translation. J Thorac Cardiovasc Surg 2023; 166:960-967. [PMID: 36184321 PMCID: PMC10124772 DOI: 10.1016/j.jtcvs.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Igor E Konstantinov
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, Mass
| | - Iki Adachi
- Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Emile Bacha
- Columbia University Medical Center, Morgan Stanley Children's Hospital, New York, NY
| | | | | | - David Cleveland
- Department of Surgery, University of Alabama, Birmingham, Ala
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | - David L S Morales
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, University of Maryland School of Medicine, Baltimore, Md
| | - Bruno Reichart
- Transregional Collaborative Research Center, Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Nathalie Roy
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Simon Urschel
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Lori West
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplantation Research Program, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
10
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Schizas N, Nazou G, Angouras DC, Iliopoulos DC, Dedeilias P, Argiriou M. Heart Xenotransplantation: Current Issues and Perspectives. J Tehran Heart Cent 2023; 18:79-81. [PMID: 37637284 PMCID: PMC10459343 DOI: 10.18502/jthc.v18i2.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 08/29/2023] Open
Abstract
The Article Abstract is not available.
Collapse
|
12
|
Cooper DKC, Pierson RN. Milestones on the path to clinical pig organ xenotransplantation. Am J Transplant 2023; 23:326-335. [PMID: 36775767 PMCID: PMC10127379 DOI: 10.1016/j.ajt.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Progress in pig organ xenotransplantation has been made largely through (1) genetic engineering of the organ-source pig to protect its tissues from the human innate immune response, and (2) development of an immunosuppressive regimen based on blockade of the CD40/CD154 costimulation pathway to prevent the adaptive immune response. In the 1980s, after transplantation into nonhuman primates (NHPs), wild-type (genetically unmodified) pig organs were rejected within minutes or hours. In the 1990s, organs from pigs expressing a human complement-regulatory protein (CD55) transplanted into NHPs receiving intensive conventional immunosuppressive therapy functioned for days or weeks. When costimulation blockade was introduced in 2000, the adaptive immune response was suppressed more readily. The identification of galactose-α1,3-galactose as the major antigen target for human and NHP anti-pig antibodies in 1991 allowed for deletion of expression of galactose-α1,3-galactose in 2003, extending pig graft survival for up to 6 months. Subsequent gene editing to overcome molecular incompatibilities between the pig and primate coagulation systems proved additionally beneficial. The identification of 2 further pig carbohydrate xenoantigens allowed the production of 'triple-knockout' pigs that are preferred for clinical organ transplantation. These combined advances enabled the first clinical pig heart transplant to be performed and opened the door to formal clinical trials.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
First-of-its-kind Xenotransplantation: Bedarf an ethischer Reflexion in Wissenschaft und Gesellschaft. Ethik Med 2023. [DOI: 10.1007/s00481-023-00750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Wang L, Dark JH. Commentary: One more obstacle knocked out. J Thorac Cardiovasc Surg 2023; 165:e82-e83. [PMID: 34454734 DOI: 10.1016/j.jtcvs.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John H Dark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
15
|
Cooper DKC, Habibabady Z, Kinoshita K, Hara H, Pierson RN. The respective relevance of sensitization to alloantigens and xenoantigens in pig organ xenotransplantation. Hum Immunol 2023; 84:18-26. [PMID: 35817653 PMCID: PMC10154072 DOI: 10.1016/j.humimm.2022.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-mediated rejection is a major cause of graft injury and contributes to failure of pig xenografts in nonhuman primates (NHPs). Most 'natural' or elicited antibodies found in humans and NHPs are directed against pig glycan antigens, but antibodies binding to swine leukocyte antigens (SLA) have also been detected. Of clinical importance is (i) whether the presence of high levels of antibodies directed towards human leukocyte antigens (HLA) (i.e., high panel-reactive antibodies) would be detrimental to the outcome of a pig organ xenograft; and (ii) whether, in the event of sensitization to pig antigens, a subsequent allotransplant would be at increased risk of graft failure due to elicited anti-pig antibodies that cross-react with human HLA or other antigens. SUMMARY A literature review of pig-to-primate studies indicates that relatively few highly-HLA-sensitized humans have antibodies that cross-react with pigs, predicting that most would not be at increased risk of rejecting an organ xenograft. Furthermore, the existing evidence indicates that sensitization to pig antigens will probably not elicit increased alloantibody titers; if so, 'bridging' with a pig organ could be carried out without increased risk of subsequent antibody-mediated allograft failure. KEY MESSAGE These issues have important implications for the design and conduct of clinical xenotransplantation trials.
Collapse
Affiliation(s)
- D K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Z Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - K Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - R N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Kawicka M, Lewicki M, Frydrychowski P, Michałek M, Noszczyk-Nowak A. Comparative analysis of ECG records depending on body position in domestic swine (Sus scrofa domestica). Porcine Health Manag 2022; 8:39. [PMID: 36123754 PMCID: PMC9484185 DOI: 10.1186/s40813-022-00282-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Electrocardiography is a method widely applied in diagnosing abnormalities in the functioning of the heart muscle in veterinary medicine. It is a non-invasive and easy to perform test helpful in the general examination and a widely used patient monitoring method during anesthesia. Since the 1980s, pigs have become more and more popular companion animals. Moreover, the pig is a widely used model animal in biomedical research. Therefore, there is need to provide them with higher-quality veterinary services, also in emergency situations. It creates new challenges for veterinarians and the need to expand their knowledge of pigs’ treatment as pets. The aim of the planned experiment was to compare the ECG recordings made with two different body positions and determine if any differences occurred. Standard ECG in swine is performed under general anesthesia in the lying position on the left side, for this position of the body have been developed and reported standards in the literature. However, some procedures performed on swine require a different body position, for which there is less data in the literature.
Methods The study was carried out on 29 Polish landrace pigs weighing in the range of 33–44 kg. The tests were performed under general anesthesia with the same protocol for each animal, placing the animals first lying down on their right side, and then on their backs. The anesthesia protocol included medetomidine, midazolam, ketamine, and propofol. During the examination, ECG records were performed and analyzed in a 12-lead system with software support. Results The results show significant differences in electrocardiogram recordings depending on the animal's body position. Those differences mainly concern the amplitude of the P wave and R wave in the recordings and are even more visible comparing the electrocardiograms of the same specimen. There are also some significant differences in the duration of intervals. Based on the obtained results, reference ranges for the right lateral and dorsal positions were developed. Conclusion In conclusion, the body position has a significant impact on the ECG recording in swine, therefore performing this examination, chosen normative value tables should be compatible with the position of the examined animal.
Collapse
Affiliation(s)
- Marta Kawicka
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 31 Norwida St., 50-357, Wrocław, Poland
| | - Maksymilian Lewicki
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 31 Norwida St., 50-357, Wrocław, Poland
| | - Piotr Frydrychowski
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 47 Grunwaldzki Square, 50-366, Wrocław, Poland
| | - Marcin Michałek
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 47 Grunwaldzki Square, 50-366, Wrocław, Poland
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 47 Grunwaldzki Square, 50-366, Wrocław, Poland.
| |
Collapse
|
17
|
Pierson RN, Allan JS, Cooper DK, D’Alessandro DA, Fishman JA, Kawai T, Lewis GD, Madsen JC, Markmann JF, Riella LV. Expert Opinion Special Feature: Patient Selection for Initial Clinical Trials of Pig Organ Transplantation. Transplantation 2022; 106:1720-1723. [PMID: 35761442 PMCID: PMC10124765 DOI: 10.1097/tp.0000000000004197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James S. Allan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A. D’Alessandro
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jay A. Fishman
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory D. Lewis
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James F. Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Cooper DKC, Yamamoto T, Hara H, Pierson RN. The first clinical pig heart transplant: Was IVIg or pig cytomegalovirus detrimental to the outcome? Xenotransplantation 2022; 29:e12771. [PMID: 35942912 PMCID: PMC10124764 DOI: 10.1111/xen.12771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
The clinical course of the first patient to receive a gene-edited pig heart transplant was recently reported by the University of Maryland team. Although the pig heart functioned well for >40 days, serum anti-pig antibodies then increased, and the patient sadly died after 60 days. Because of his debilitated pre-transplant state, the patient never thrived despite excellent graft function for several weeks, and the cause of his demise continues to be uncertain. A few days before an increase in anti-pig antibodies was observed, the patient had received intravenous human immunoglobulin (IVIg), and whether this played a role in his cardiac deterioration has been discussed. Furthermore, mcfDNA testing indicated an increase in pig cytomegalovirus (CMV), and its possible role in the development of cardiac dysfunction has also been considered. On the basis of the limited data provided in the publication and on our previous investigations into whether IVIg contains anti-TKO pig antibodies and therefore might be deleterious to TKO pig organ xenografts, we suggest that the steady rise in anti-pig antibody titer was more consistent with the failure of the immunosuppressive regimen to prevent elicited anti-TKO pig antibody production, rather than from the passive transfusion of IVIg or the presence of pig CMV in the graft. Although the outcome of the Maryland experience was disappointing, valuable lessons were learned. Our attention was drawn to the potential risks of heart transplantation in a "deconditioned" patient, the administration of IVIg, the transmission of pig CMV, and of the difficulties in interpreting myocardial biopsy findings.
Collapse
Affiliation(s)
- David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Takayuki Yamamoto
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Carrier AN, Verma A, Mohiuddin M, Pascual M, Muller YD, Longchamp A, Bhati C, Buhler LH, Maluf DG, Meier RPH. Xenotransplantation: A New Era. Front Immunol 2022; 13:900594. [PMID: 35757701 PMCID: PMC9218200 DOI: 10.3389/fimmu.2022.900594] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Organ allotransplantation has now reached an impassable ceiling inherent to the limited supply of human donor organs. In the United States, there are currently over 100,000 individuals on the national transplant waiting list awaiting a kidney, heart, and/or liver transplant. This is in contrast with only a fraction of them receiving a living or deceased donor allograft. Given the morbidity, mortality, costs, or absence of supportive treatments, xenotransplant has the potential to address the critical shortage in organ grafts. Last decade research efforts focused on creation of donor organs from pigs with various genes edited out using CRISPR technologies and utilizing non-human primates for trial. Three groups in the United States have recently moved forward with trials in human subjects and obtained initial successful results with pig-to-human heart and kidney xenotransplantation. This review serves as a brief discussion of the recent progress in xenotransplantation research, particularly as it concerns utilization of porcine heart, renal, and liver xenografts in clinical practice.
Collapse
Affiliation(s)
- Amber N Carrier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anjali Verma
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Manuel Pascual
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Chandra Bhati
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Caplan A, Parent B. Ethics and the emerging use of pig organs for xenotransplantation. J Heart Lung Transplant 2022; 41:1204-1206. [DOI: 10.1016/j.healun.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022] Open
|
21
|
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Cozzi E, Schneeberger S, Bellini MI, Berglund E, Böhmig G, Fowler K, Hoogduijn M, Jochmans I, Marckmann G, Marson L, Neuberger J, Oberbauer R, Pierson RN, Reichart B, Scobie L, White C, Naesens M. Organ transplants of the future: planning for innovations including xenotransplantation. Transpl Int 2021; 34:2006-2018. [PMID: 34459040 DOI: 10.1111/tri.14031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
The future clinical application of animal-to-human transplantation (xenotransplantation) is of importance to society as a whole. Favourable preclinical data relevant to cell, tissue and solid organ xenotransplants have been obtained from many animal models utilizing genetic engineering and protocols of pathogen-free husbandry. Findings have reached a tipping point, and xenotransplantation of solid organs is approaching clinical evaluation, the process of which now requires close deliberation. Such discussions include considering when there is sufficient evidence from preclinical animal studies to start first-in-human xenotransplantation trials. The present article is based on evidence and opinions formulated by members of the European Society for Organ Transplantation who are involved in the Transplantation Learning Journey project. The article includes a brief overview of preclinical concepts and biology of solid organ xenotransplantation, discusses the selection of candidates for first-in-human studies and considers requirements for study design and conduct. In addition, the paper emphasizes the need for a regulatory framework for xenotransplantation of solid organs and the essential requirement for input from public and patient stakeholders.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Irene Bellini
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
- Department of Emergency Medicine and Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Erik Berglund
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska Institute and ITB-MED, Stockholm, Sweden
| | - Georg Böhmig
- Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Kevin Fowler
- The Voice of the Patient, Inc., Chicago, IL, USA
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ina Jochmans
- Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Georg Marckmann
- Institute of Ethics, History and Theory of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lorna Marson
- The Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
23
|
Loebe M, Parker B. Don't pig(!) the wrong heart! J Card Surg 2021; 36:3802-3804. [PMID: 34309898 DOI: 10.1111/jocs.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Cardiac xenotransplantation is believed to have approached clinical application. However, this approach to advanced heart failure is burdened with a multitude of ethical issues. These issues need to be addressed openly and be broadly discussed in public. Only through an honest and transparent approach, it will be possible to engage the lay audience in the evaluation of pig to human transplant.
Collapse
Affiliation(s)
- Matthias Loebe
- Department of Surgery, University of Miami, Miami, Florida, USA
| | - Brandon Parker
- Department of Surgery, University of Miami, Miami, Florida, USA
| |
Collapse
|
24
|
Garcia LR, Brito FDS, Felicio ML, Garzesi AM, Tardivo MT, Polegato BF, Minicucci MF, Zornoff LAM. Clinical trials in cardiac xenotransplantation: Are we ready to overcome barriers? J Card Surg 2021; 36:3796-3801. [PMID: 34137071 DOI: 10.1111/jocs.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
Heart allotransplantation has become one of the methods of choice in the treatment of severe heart failure. In the face of its difficulties, such as the unmet balance between organ supply and demand, the use of xenotransplantation (XTx) might be an attractive option shortly, even more with the ongoing progress achieved regarding the avoidance of hyperacute rejection and primary organ disfunction, maintenance of xenograft function and control of xenograft growth. To make possible this translational challenge, some points must be taken into account indeed, and they are the equipoise of human benefit and animal suffering, the risk of unknown infections, a well prepared informed consent, ethical and religious beliefs, and the role of cardiac XTx in a ventricular assistance device era.
Collapse
Affiliation(s)
- Leonardo Rufino Garcia
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Flavio de Souza Brito
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Marcello Laneza Felicio
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - André Monti Garzesi
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Márcia Terezinha Tardivo
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
25
|
Pierson RN, Fishman JA, Lewis GD, D'Alessandro DA, Connolly MR, Burdorf L, Madsen JC, Azimzadeh AM. Progress Toward Cardiac Xenotransplantation. Circulation 2020; 142:1389-1398. [PMID: 33017208 DOI: 10.1161/circulationaha.120.048186] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consistent survival of life-supporting pig heart xenograft recipients beyond 90 days was recently reported using genetically modified pigs and a clinically applicable drug treatment regimen. If this remarkable achievement proves reproducible, published benchmarks for clinical translation of cardiac xenografts appear to be within reach. Key mechanistic insights are summarized here that informed recent pig design and therapeutic choices, which together appear likely to enable early clinical translation.
Collapse
Affiliation(s)
- Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Jay A Fishman
- Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Gregory D Lewis
- Division of Cardiology, Department of Medicine (G.D.L.), Massachusetts General Hospital and Harvard University, Boston
| | - David A D'Alessandro
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Margaret R Connolly
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Joren C Madsen
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| |
Collapse
|