1
|
Zhang Y, Peng C, Wang L, Chen S, Wang J, Tian Z, Wang C, Chen X, Zhu S, Zhang GF, Wang Y. Prevalence of propionic acidemia in China. Orphanet J Rare Dis 2023; 18:281. [PMID: 37689673 PMCID: PMC10493020 DOI: 10.1186/s13023-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive congenital disease caused by mutations in the PCCA or PCCB genes. Elevated propionylcarnitine, 2-methylcitric acid (2MCA), propionylglycine, glycine and 3-hydroxypropionate can be used to diagnose PA. Early-onset PA can lead to acute deterioration, metabolic acidosis, and hyperammonemia shortly after birth, which can result in high mortality and disability. Late-onset cases of PA have a more heterogeneous clinical spectra, including growth retardation, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, arrhythmias, adaptive immune defects, rhabdomyolysis, optic atrophy, hearing loss, premature ovarian failure, and chronic kidney disease. Timely and accurate diagnosis and appropriate treatment are crucial to saving patients' lives and improving their prognosis. Recently, the number of reported PA cases in China has increased due to advanced diagnostic techniques and increased research attention. However, an overview of PA prevalence in China is lacking. Therefore, this review provides an overview of recent advances in the pathogenesis, diagnostic strategies, and treatment of PA, including epidemiological data on PA in China. The most frequent variants among Chinese PA patients are c.2002G > A in PCCA and c.1301C > T in PCCB, which are often associated with severe clinical symptoms. At present, liver transplantation from a living (heterozygous parental) donor is a better option for treating PA in China, especially for those exhibiting a severe metabolic phenotype and/or end-organ dysfunction. However, a comprehensive risk-benefit analysis should be conducted as an integral part of the decision-making process. This review will provide valuable information for the medical care of Chinese patients with PA.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuwen Peng
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Lifang Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Sitong Chen
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Junwei Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuangong Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| | - You Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| |
Collapse
|
2
|
Marchuk H, Wang Y, Ladd ZA, Chen X, Zhang GF. Pathophysiological mechanisms of complications associated with propionic acidemia. Pharmacol Ther 2023; 249:108501. [PMID: 37482098 PMCID: PMC10529999 DOI: 10.1016/j.pharmthera.2023.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.
Collapse
Affiliation(s)
- Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - You Wang
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong 272067, China.; School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Zachary Alec Ladd
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA.
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, and Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Sen K, Burrage LC, Chapman KA, Ginevic I, Mazariegos GV, Graham BH. Solid organ transplantation in methylmalonic acidemia and propionic acidemia: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100337. [PMID: 36534118 DOI: 10.1016/j.gim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | -
- American College of Medical Genetics and Genomics, Bethesda, MD
| |
Collapse
|
4
|
Zeng ZG, Zhou GP, Wei L, Qu W, Liu Y, Tan YL, Wang J, Sun LY, Zhu ZJ. Therapeutic potential of living donor liver transplantation from heterozygous carrier donors in children with propionic acidemia. Orphanet J Rare Dis 2022; 17:62. [PMID: 35189944 PMCID: PMC8862340 DOI: 10.1186/s13023-022-02233-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/06/2022] [Indexed: 02/08/2023] Open
Abstract
Background Current world experience regarding living donor liver transplantation (LDLT) in the treatment of propionic acidemia (PA) is limited, especially in terms of using obligate heterozygous carriers as donors. This study aimed to evaluate the clinical outcomes of LDLT in children with PA.
Methods From November 2017 to January 2020, 7 of the 192 children who underwent LDLT at our institution had been diagnosed with PA (median age, 2.1 years; range, 1.1–5.8 years). The primary indication for transplantation was frequent metabolic decompensations in 6 patients and preventative treatment in 1 patient. Of the seven parental living donors, six were genetically proven obligate heterozygous carriers. Results During a median follow-up of 23.9 months (range, 13.9–40.2 months), all patients were alive with 100% allograft survival, and no severe transplant-related complications occurred. In the case of liberalized protein intake, they did not suffer metabolic decompensation or disease-related complications and made progress in neurodevelopmental delay and body growth, as well as blood and urinary metabolite levels. In one patient with pre-existing mild dilated cardiomyopathy, her echocardiogram results completely normalized 13.8 months post-transplant. All living donors recovered well after surgery, with no metabolic decompensations or procedure-related complications. Western blotting revealed that the hepatic expressions of PCCA and PCCB in one of the heterozygous donors were comparable to those of the normal healthy control at the protein level. Conclusions LDLT using partial liver grafts from asymptomatic obligate heterozygous carrier donors is a viable therapeutic option for selected PA patients, with no negative impact on donors’ and recipients' clinical courses.
Collapse
|