1
|
Assadiasl S, Nicknam MH. Intestinal transplantation: Significance of immune responses. Arab J Gastroenterol 2024; 25:330-337. [PMID: 39289083 DOI: 10.1016/j.ajg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Intestinal allografts, with many resident immune cells and as a destination for circulating lymphocytes of the recipient, appear to be the most challenging solid organ transplants. The high incidence of acute rejection and frequent reports of fatal graft-versus-host disease (GvHD) after intestinal transplantation call for more research to describe the molecular mechanisms involved in the immunopathogenesis of post-transplant complications to define new therapeutic targets. In addition, according to the rapid development of immunosuppressive agents, it is time to consider novel therapeutic approaches in managing treatment-refractory patients with rejection or severe GvHD. Herein, the main immunological challenges before and after intestinal transplant including, brain-dead donor inflammation, acute rejection, antibody-mediated, and chronic rejections, as well as GvHD have been described. Besides, the new immune-based therapies used in experimental and clinical settings to improve tolerance toward intestinal allograft, and cases of operational tolerance have been reviewed.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Suek N, Young T, Fu J. Immune cell profiling in intestinal transplantation. Hum Immunol 2024; 85:110808. [PMID: 38762429 PMCID: PMC11283363 DOI: 10.1016/j.humimm.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.
Collapse
Affiliation(s)
- Nathan Suek
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyla Young
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Oza K, Kang J, Patil D, Owen KL, Cui W, Khan K, Kaufman SS, Kroemer A. Current Advances in Graft-versus-host Disease After Intestinal Transplantation. Transplantation 2024; 108:399-408. [PMID: 37309025 DOI: 10.1097/tp.0000000000004703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graft-versus-host disease (GvHD) remains a potentially fatal complication following intestinal transplant (ITx). Over the past decade, advances in the understanding of the pathophysiology of this complex immunological phenomenon have led to the reassessment of the host systemic immune response and have created a gateway for novel preventive and therapeutic strategies. Although sufficient evidence dictates the use of corticosteroids as a first-line option, the treatment for refractory disease remains contentious and lacks a standardized therapeutic approach. Timely diagnosis remains crucial, and the advent of chimerism detection and immunological biomarkers have transformed the identification, prognostication, and potential for survival after GvHD in ITx. The objectives of the following review aim to discuss the clinical and diagnostic features, pathophysiology, advances in immune biomarkers, as well as therapeutic opportunities in the prevention and treatment of GvHD in ITx.
Collapse
Affiliation(s)
- Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, DC
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Kathryn L Owen
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Wanxing Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
4
|
Lee S, Lee K, Bae H, Lee K, Lee J, Ma J, Lee YJ, Lee BR, Park WY, Im SJ. Defining a TCF1-expressing progenitor allogeneic CD8 + T cell subset in acute graft-versus-host disease. Nat Commun 2023; 14:5869. [PMID: 37737221 PMCID: PMC10516895 DOI: 10.1038/s41467-023-41357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a severe complication of hematopoietic stem cell transplantation driven by activated allogeneic T cells. Here, we identify a distinct subset of T cell factor-1 (TCF1)+ CD8+ T cells in mouse allogeneic and xenogeneic transplant models of acute GvHD. These TCF1+ cells exhibit distinct characteristics compared to TCF1- cells, including lower expression of inhibitory receptors and higher expression of costimulatory molecules. Notably, the TCF1+ subset displays exclusive proliferative potential and could differentiate into TCF1- effector cells upon antigenic stimulation. Pathway analyses support the role of TCF1+ and TCF1- subsets as resource cells and effector cells, respectively. Furthermore, the TCF1+ CD8+ T cell subset is primarily present in the spleen and exhibits a resident phenotype. These findings provide insight into the differentiation of allogeneic and xenogeneic CD8+ T cells and have implications for the development of immunotherapeutic strategies targeting acute GvHD.
Collapse
Affiliation(s)
- Solhwi Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kunhee Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjin Bae
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungmin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junghwa Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junhui Ma
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ye Ji Lee
- GENINUS Inc., Seoul, Republic of Korea
| | | | - Woong-Yang Park
- GENINUS Inc., Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Yan C, Nebhan CA, Saleh N, Shattuck-Brandt R, Chen SC, Ayers GD, Weiss V, Richmond A, Vilgelm AE. Generation of Orthotopic Patient-Derived Xenografts in Humanized Mice for Evaluation of Emerging Targeted Therapies and Immunotherapy Combinations for Melanoma. Cancers (Basel) 2023; 15:3695. [PMID: 37509357 PMCID: PMC10377652 DOI: 10.3390/cancers15143695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Current methodologies for developing PDX in humanized mice in preclinical trials with immune-based therapies are limited by GVHD. Here, we compared two approaches for establishing PDX tumors in humanized mice: (1) PDX are first established in immune-deficient mice; or (2) PDX are initially established in humanized mice; then established PDX are transplanted to a larger cohort of humanized mice for preclinical trials. With the first approach, there was rapid wasting of PDX-bearing humanized mice with high levels of activated T cells in the circulation and organs, indicating immune-mediated toxicity. In contrast, with the second approach, toxicity was less of an issue and long-term human melanoma tumor growth and maintenance of human chimerism was achieved. Preclinical trials from the second approach revealed that rigosertib, but not anti-PD-1, increased CD8/CD4 T cell ratios in spleen and blood and inhibited PDX tumor growth. Resistance to anti-PD-1 was associated with PDX tumors established from tumors with limited CD8+ T cell content. Our findings suggest that it is essential to carefully manage immune editing by first establishing PDX tumors in humanized mice before expanding PDX tumors into a larger cohort of humanized mice to evaluate therapy response.
Collapse
Affiliation(s)
- Chi Yan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
| | - Caroline A. Nebhan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
- Division of Hematology & Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
| | - Rebecca Shattuck-Brandt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.-C.C.); (G.D.A.)
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.-C.C.); (G.D.A.)
| | - Vivian Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
| | - Anna E. Vilgelm
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center—Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Li M, Song S, Tian G, Zhi Y, Chen Y, Huang H, Jiao W, Yu Y, Lv G. Expansion kinetics of graft-versus-host T cell clones in patients with post-liver transplant graft-versus-host disease. Am J Transplant 2022; 22:2689-2693. [PMID: 35665999 DOI: 10.1111/ajt.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GVHD) following liver transplantation is induced by the graft-versus-host (GVH) T cell that is transferred with the liver graft, but the dynamics remain poorly investigated in clinical liver transplantation GVHD. Here, we report that in two liver transplantation recipients who developed GVHD, both of whom showed donor T cell macrochimerism in the blood before clinical GVHD onset. Longitudinal tracking of GVH T cell clones in one of these recipients revealed that GVH T cell clonal expansion occurred before disease onset, and the dominant GVH T cells might also derive from non-hepatic tissue-resident memory T cells in the liver-graft. Additionally, a comparison of the inflammatory cytokine levels and TCR repertoire diversities in recipient pre-liver transplantation blood between 4 patients with GVHD and 12 non-GVHD patients showed that the levels of TNF-α and IL-8, and the overall TCR repertoire skewness in pre-transplant recipient blood samples may serve as potential independent risk factors for the disease.
Collapse
Affiliation(s)
- Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Wenyu Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
7
|
Girlanda R, Liggett JR, Jayatilake M, Kroemer A, Guerra JF, Hawksworth JS, Radkani P, Matsumoto CS, Zasloff M, Fishbein TM. The Microbiome and Metabolomic Profile of the Transplanted Intestine with Long-Term Function. Biomedicines 2022; 10:biomedicines10092079. [PMID: 36140180 PMCID: PMC9495872 DOI: 10.3390/biomedicines10092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
We analyzed the fecal microbiome by deep sequencing of the 16S ribosomal genes and the metabolomic profiles of 43 intestinal transplant recipients to identify biomarkers of graft function. Stool samples were collected from 23 patients with stable graft function five years or longer after transplant, 15 stable recipients one-year post-transplant and four recipients with refractory rejection and graft loss within one-year post-transplant. Lactobacillus and Streptococcus species were predominant in patients with stable graft function both in the short and long term, with a microbiome profile consistent with the general population. Conversely, Enterococcus species were predominant in patients with refractory rejection as compared to the general population, indicating profound dysbiosis in the context of graft dysfunction. Metabolomic analysis demonstrated significant differences between the three groups, with several metabolites in rejecting recipients clustering as a distinct set. Our study suggests that the bacterial microbiome profile of stable intestinal transplants is similar to the general population, supporting further application of this non-invasive approach to identify biomarkers of intestinal graft function.
Collapse
Affiliation(s)
- Raffaelle Girlanda
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Correspondence:
| | - Jedson R. Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Naval Medical Center Portsmouth, Portsmouth, VA 23704, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Juan Francisco Guerra
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Jason Solomon Hawksworth
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20812, USA
| | - Pejman Radkani
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Cal S. Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
8
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
9
|
Graft Versus Host Disease After Intestinal Transplantation: A Single-center Experience. Transplant Direct 2021; 7:e731. [PMID: 34291153 PMCID: PMC8291352 DOI: 10.1097/txd.0000000000001187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Graft versus host disease (GVHD) is an uncommon but highly morbid complication of intestinal transplantation (ITx). In this study, we reviewed our 17-y experience with GVHD focusing on factors predicting GVHD occurrence and survival. Methods. Retrospective review of 271 patients who received 1 or more ITx since program inception in 2003 with survival analysis using Cox proportional hazard modeling. Results. Of 271 patients, 28 developed GHVD 34 (18–66) d after ITx presenting with rash or rash with fever in 26, rectosigmoid disease in 1, and hemolysis in 1; other sites, mainly rectosigmoid colon, were involved in 13. Initial skin biopsy demonstrated classic findings in 6, compatible findings in 14, and no abnormalities in 2. Additional sites of GVHD later emerged in 14. Of the 28 patients, 16 died largely from sepsis, the only independent hazard for death (hazard ratio [HR], 37.4181; P = 0.0008). Significant (P < 0.0500) independent hazards for occurrence of GVHD in adults were pre-ITx functional intestinal failure (IF) (HR, 15.2448) and non-IF diagnosis (HR, 20.9952) and early post-ITx sirolimus therapy (HR, 0.0956); independent hazards in children were non-IF diagnosis (HR, 4.3990), retransplantation (HR, 4.6401), donor:recipient age ratio (HR, 7.3190), and graft colon omission (HR, 0.1886). Variant transplant operation was not an independent GVHD hazard. Conclusions. Initial diagnosis of GVHD after ITx remains largely clinical, supported but not often confirmed by skin biopsy. Although GVHD risk is mainly recipient-driven, changes in donor selection and immunosuppression practice may reduce incidence and improve survival.
Collapse
|