1
|
Kukreja J, Campo-Canaveral de la Cruz JL, Van Raemdonck D, Cantu E, Date H, D'Ovidio F, Hartwig M, Klapper JA, Kelly RF, Lindstedt S, Rosso L, Schaheen L, Smith M, Whitson B, Saddoughi SA, Cypel M. The 2024 American Association for Thoracic Surgery expert consensus document: Current standards in donor lung procurement and preservation. J Thorac Cardiovasc Surg 2025; 169:484-504. [PMID: 39826938 DOI: 10.1016/j.jtcvs.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Donor lung procurement and preservation is critical for lung transplantation success. Unfortunately, the large variability in techniques impacts organ utilization rates and transplantation outcomes. Compounding this variation, recent developments in cold static preservation and new technological advances with machine perfusion have increased the complexity of the procedure. The objective of the American Association for Thoracic Surgery (AATS) Clinical Practice Standards Committee (CPSC) expert panel was to make evidence-based recommendations for best practices in donor lung procurement and preservation based on review of the existing literature. METHODS The AATS CPSC assembled an expert panel of 16 lung transplantation surgeons from 14 centers who developed a consensus document of recommendations. The panel was divided into 7 subgroups covering (1) intraoperative donor assessment, (2) surgical techniques, (3) ex situ static lung preservation methods, (4) hypothermic preservation, (5) normothermic ex vivo lung perfusion (EVLP), (6) donation after circulatory death (DCD) and normothermic regional perfusion, and (7) donor management centers, organ assessment centers, and third-party procurement teams. Following a focused literature review, each subgroup formulated recommendation statements for each subtopic, which were reviewed and further refined using a Delphi process until a 75% consensus was achieved on each final statement by the voting group. RESULTS The expert panel achieved consensus on 34 recommendations for current best practices in donor lung procurement and preservation both in brain-dead as well as DCD donation. The use of new methods of cold preservation, the role of EVLP, and DCD with and without concomitant heart donation are described in detail. CONCLUSIONS Consistent and best practices in donor lung procurement and preservation are critical to improve both lung transplantation numbers as well as recipient outcomes. The recommendations described here provide guidance for professionals involved in the care of patients with end-stage lung disease considered for transplantation.
Collapse
Affiliation(s)
- Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, Calif.
| | | | - Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Edward Cantu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadephia, Pa
| | - Hiroshi Date
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Frank D'Ovidio
- Division of Thoracic Surgery, Columbia University Medical Center, New York, NY
| | - Matthew Hartwig
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jacob A Klapper
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Rosemary F Kelly
- Division of CardioThoracic Surgery, University of Minnesota, Minneapolis, Minn
| | - Sandra Lindstedt
- Division of Thoracic Surgery, Skane University Hospital, Lund, Sweden
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Lara Schaheen
- St Joseph's Hospital and Medical Center, Phoenix, Ariz
| | - Michael Smith
- St Joseph's Hospital and Medical Center, Phoenix, Ariz
| | - Bryan Whitson
- Division of Cardiac Surgery, Ohio State University Medical Center, Columbus, Ohio
| | | | - Marcelo Cypel
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Sakanoue I, Okamoto T, Ayyat KS, Yun JJ, Tantawi AM, McCurry KR. Real-time lung weight measurement during clinical ex vivo lung perfusion. J Heart Lung Transplant 2024; 43:2008-2017. [PMID: 38944131 DOI: 10.1016/j.healun.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Real-time lung weight (LW) measurement is a simple and noninvasive technique for detecting extravascular lung water during ex vivo lung perfusion (EVLP). We investigated the feasibility of real-time LW measurement in clinical EVLP as a predictor of transplant suitability and post-transplant outcomes. METHODS In our clinical acellular EVLP protocol, real-time LW was measured in 117 EVLP cases from June 2019 to June 2022. The estimated LW gain at each time point was calculated using a scale placed under the organ chamber. The lungs were classified into 4 categories based on LW adjusted for height and compared between suitable and unsuitable cases. The relationship between estimated LW gain and primary graft dysfunction was also investigated. RESULTS The estimated LW gain during the EVLP significantly correlated with the LW gain (post-EVLP LW and pre-EVLP LW) measured on the back table (R2 = 0.61, p < 0.01). In the adjusted LW categories 2 to 4, the estimated LW gain at 0-1 hour after EVLP was significantly higher in unsuitable cases than in suitable cases. The area under the curve for the estimated LW gain was ≥0.80. Primary graft dysfunction grades 0 to 1 had a significantly lower estimated LW gain at 60 minutes than grades 2 to 3 (-43 vs 1 g, p < 0.01). CONCLUSIONS Real-time lung measurements can predict transplant suitability and post-transplant outcomes by the early detection of extravascular lung water during the initial 1 hour of EVLP.
Collapse
Affiliation(s)
- Ichiro Sakanoue
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Transplant Center, Cleveland Clinic, Cleveland, Ohio
| | - Kamal S Ayyat
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - James J Yun
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Transplant Center, Cleveland Clinic, Cleveland, Ohio
| | - Abdel Moneim Tantawi
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kenneth R McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Transplant Center, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
3
|
Amarelli C, Bello I, Aigner C, Berman M, Boffini M, Clark S, Dalvindt M, de Wolf J, Ensminger S, Gomez de Antonio D, Hoyos L, Palmieri L, Schweiger M, Sponga S, Wiegmann B, Neyrinck A. European Society of Organ Transplantation (ESOT) Consensus Statement on Machine Perfusion in Cardiothoracic Transplant. Transpl Int 2024; 37:13112. [PMID: 39649067 PMCID: PMC11620879 DOI: 10.3389/ti.2024.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/26/2024] [Indexed: 12/10/2024]
Abstract
The machine perfusion (MP) of transplantable grafts has emerged as an upcoming field in Cardiothoracic (CT) transplantation during the last decade. This technology carries the potential to assess, preserve, and even recondition thoracic grafts before transplantation, so it is a possible game-changer in the field. This technology field has reached a critical turning point, with a growing number of publications coming predominantly from a few leading institutions, but still need solid scientific evidence. Due to the increasing need to expand the donor pool, especially in Europe, where the donor age is steeply increased, a consensus has been established to address the growing need and knowledge of machine perfusion in cardiothoracic transplantation, targeting the unmet scientific need in this growing field but also, priorities for development, and regional differences in utilization rates and organizational issues. To address MP in CT, the European Society of Organ Transplantation (ESOT) convened a dedicated Working group comprised of experts in CT to review literature about MP to develop guidelines that were subsequently discussed and voted on during the Consensus Conference that took place in person in Prague during the TLJ 3.0 in November 2022. The findings and recommendations of the Cardiothoracic Working Group on MP are presented in this article.
Collapse
Affiliation(s)
- Cristiano Amarelli
- Department of Cardiac Surgery and Transplants, Monaldi, Azienda dei Colli, Naples, Italy
| | - Irene Bello
- Institut Clínic Respiratorio, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Marius Berman
- Transplant Unit, Royal Papworth Hospital, NHS Foundation Trust, Cambridge, United Kingdom
| | - Massimo Boffini
- Cardiac Surgery Division, Surgical Sciences Department, Citta della Salute e della Scienza, University of Torino, Turin, Italy
| | - Stephen Clark
- Department Cardiothoracic Transplant, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marita Dalvindt
- Department of Cardiothoracic Surgery, Lund University, Lund, Sweden
| | - Julien de Wolf
- Department of Thoracic Surgery, Lung Heart Institute, University Hospital of Lille, Lille, France
| | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, Lübeck, Germany
| | - David Gomez de Antonio
- Department of Thoracic Surgery, Puerta de Hierro University Hospital Majadahonda, Madrid, Spain
| | - Lucas Hoyos
- Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Lucrezia Palmieri
- Department of Translational Medical Sciences, Monaldi Hospital, University of Campania “Luigi Vanvitelli“, Naples, Italy
| | - Martin Schweiger
- Department of Congenital Cardiovascular Surgery, Pediatric Heart Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sandro Sponga
- Division of Cardiac Surgery, Cardiothoracic Department, University Hospital of Udine, Udine, Italy
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, Anesthesiology and Algology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
Chao BT, Sage AT, McInnis MC, Ma J, Grubert Van Iderstine M, Zhou X, Valero J, Cypel M, Liu M, Wang B, Keshavjee S. Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs. NPJ Digit Med 2024; 7:272. [PMID: 39363013 PMCID: PMC11452202 DOI: 10.1038/s41746-024-01260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.
Collapse
Affiliation(s)
- Bonnie T Chao
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Andrew T Sage
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Micheal C McInnis
- University Medical Imaging Toronto, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jun Ma
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Vector Institute, University of Toronto, Toronto, ON, Canada
| | - Micah Grubert Van Iderstine
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Xuanzi Zhou
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jerome Valero
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bo Wang
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Vector Institute, University of Toronto, Toronto, ON, Canada
- AI Hub, University Health Network, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- AI Hub, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
5
|
Gouchoe DA, Sanchez PG, D'Cunha J, Bermudez CA, Daneshmand MA, Davis RD, Hartwig MG, Wozniak TC, Kon ZN, Griffith BP, Lynch WR, Machuca TN, Weyant MJ, Jessen ME, Mulligan MS, D'Ovidio F, Camp PC, Cantu E, Whitson BA. Ex vivo lung perfusion in donation after circulatory death: A post hoc analysis of the Normothermic Ex Vivo Lung Perfusion as an Assessment of Extended/Marginal Donors Lungs trial. J Thorac Cardiovasc Surg 2024; 168:724-734.e7. [PMID: 38508486 DOI: 10.1016/j.jtcvs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Donation after circulatory death (DCD) donors offer the ability to expand the lung donor pool and ex vivo lung perfusion (EVLP) further contributes to this ability by allowing for additional evaluation and resuscitation of these extended criteria donors. We sought to determine the outcomes of recipients receiving organs from DCD EVLP donors in a multicenter setting. METHODS This was an unplanned post hoc analysis of a multicenter, prospective, nonrandomized trial that took place during 2011 to 2017 with 3 years of follow-up. Patients were placed into 3 groups based off procurement strategy: brain-dead donor (control), brain-dead donor evaluated by EVLP, and DCD donors evaluated by EVLP. The primary outcomes were severe primary graft dysfunction at 72 hours and survival. Secondary outcomes included select perioperative outcomes, and 1-year and 3-years allograft function and quality of life measures. RESULTS The DCD EVLP group had significantly higher incidence of severe primary graft dysfunction at 72 hours (P = .03), longer days on mechanical ventilation (P < .001) and in-hospital length of stay (P = .045). Survival at 3 years was 76.5% (95% CI, 69.2%-84.7%) for the control group, 68.3% (95% CI, 58.9%-79.1%) for the brain-dead donor group, and 60.7% (95% CI, 45.1%-81.8%) for the DCD group (P = .36). At 3-year follow-up, presence observed bronchiolitis obliterans syndrome or quality of life metrics did not differ among the groups. CONCLUSIONS Although DCD EVLP allografts might not be appropriate to transplant in every candidate recipient, the expansion of their use might afford recipients stagnant on the waitlist a viable therapy.
Collapse
Affiliation(s)
- Doug A Gouchoe
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Center, College of Medicine, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, Wright-Patterson Air Force Base, Ohio
| | - Pablo G Sanchez
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, Ariz
| | | | - Mani A Daneshmand
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Robert D Davis
- Department of Cardiovascular and Thoracic Surgery, Florida Hospital Transplant Center, Orlando, Fla
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC
| | - Thomas C Wozniak
- Division of Cardiothoracic Surgery, ProHealth Care, Waukesha, Wis
| | - Zachary N Kon
- Division of Cardiothoracic Surgery, Department of Surgery, Northwell Health, Manhasset, NY
| | - Bartley P Griffith
- Department of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Md
| | - William R Lynch
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Tiago N Machuca
- Division of Lung Transplantation, Department of Surgery, University of Miami Miller School of Medicine, Miami, Fla
| | | | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern, Dallas, Tex
| | - Michael S Mulligan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, Wash
| | - Frank D'Ovidio
- Section of General Thoracic Surgery, Lung Transplant Program, Columbia University Medical Center, New York, NY
| | - Phillip C Camp
- Department of Cardiothoracic Surgery, Corewell Health-East, Dearborn, Mich
| | - Edward Cantu
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Bryan A Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Center, College of Medicine, Columbus, Ohio; Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory, The Ohio State University, Columbus, Ohio; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Center, College of Medicine, Columbus, Ohio.
| |
Collapse
|
6
|
Steinkühler T, Yang S, Hu MA, Jainandunsing JS, Jager NM, Erasmus ME, Struys MMRF, Bosch DJ, van Meurs M, Jabaudon M, Richard D, Timens W, Leuvenink HGD, Nieuwenhuijs-Moeke GJ. Ex Vivo Optimization of Donor Lungs with Inhaled Sevoflurane during Normothermic Ex Vivo Lung Perfusion (VITALISE): A Pilot and Feasibility Study in Sheep. Int J Mol Sci 2024; 25:2413. [PMID: 38397090 PMCID: PMC10888671 DOI: 10.3390/ijms25042413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Volatile anesthetics have been shown in different studies to reduce ischemia reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) facilitates graft evaluation, extends preservation time and potentially enables injury repair and improvement of lung quality. We hypothesized that ventilating lungs with sevoflurane during EVLP would reduce lung injury and improve lung function. We performed a pilot study to test this hypothesis in a slaughterhouse sheep DCD model. Lungs were harvested, flushed and stored on ice for 3 h, after which EVLP was performed for 4 h. Lungs were ventilated with either an FiO2 of 0.4 (EVLP, n = 5) or FiO2 of 0.4 plus sevoflurane at a 2% end-tidal concentration (Cet) (S-EVLP, n = 5). Perfusate, tissue samples and functional measurements were collected and analyzed. A steady state of the target Cet sevoflurane was reached with measurable concentrations in perfusate. Lungs in the S-EVLP group showed significantly better dynamic lung compliance than those in the EVLP group (p = 0.003). Oxygenation capacity was not different in treated lungs for delta partial oxygen pressure (PO2; +3.8 (-4.9/11.1) vs. -11.7 (-12.0/-3.2) kPa, p = 0.151), but there was a trend of a better PO2/FiO2 ratio (p = 0.054). Perfusate ASAT levels in S-EVLP were significantly reduced compared to the control group (198.1 ± 93.66 vs. 223.9 ± 105.7 IU/L, p = 0.02). We conclude that ventilating lungs with sevoflurane during EVLP is feasible and could be useful to improve graft function.
Collapse
Affiliation(s)
- Timo Steinkühler
- Department of Anesthesiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Shuqi Yang
- Department of Anesthesiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Michiel A. Hu
- Department of Thoracic Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jayant S. Jainandunsing
- Department of Anesthesiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Neeltina M. Jager
- Department of Anesthesiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Michiel E. Erasmus
- Department of Thoracic Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, University Hospital Clermont-Ferrand, 63001 Clermont-Ferrand, France
- Institute of Genetics, Reproduction & Development, University Clermont Auvergne, 63001 Clermont-Ferrand, France
- National Institute of Health and Medical Research (INSERM), National Center for Scientific Research (CNRS), 75794 Paris, France
| | - Damien Richard
- Department of Pharmacology and Toxicology, University Hospital Clermont-Ferrand, University Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
7
|
Xia Y, Kim ST, Dacey M, Sayah D, Biniwale R, Ardehali A. Characteristics and outcomes of lung transplants performed with ex-situ lung perfusion. J Heart Lung Transplant 2024; 43:217-225. [PMID: 37643655 DOI: 10.1016/j.healun.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Ex-situ lung perfusion (ESLP) can be used to assess and rehabilitate donor lungs, potentially expanding the donor pool. We examined the characteristics and outcomes of lung transplants performed with ESLP in the United States. METHODS Retrospective review of the United Network for Organ Sharing registry of primary adult lung transplant recipients from February 28, 2018, to June 30, 2021, was performed, comparing baseline characteristics, in-hospital outcomes, and 1-year survival of ESLP vs no ESLP lung transplants. RESULTS Of 8204 lung transplants, 426 (5.2%) were performed with ESLP. ESLP donors were older, more donation after circulatory death (DCD), and had lower PaO2:FiO2 (P:F) ratios. Recipients had lower lung allocation scores. ESLP lungs traveled further, had longer preservation times, and were more likely double lung transplants. Reintubation rates, extracorporeal membrane oxygenation at 72 hours, and hospital length of stay were greater in the ESLP group. On multivariable analysis, ESLP was not an independent predictor of 1-year survival. However, further analysis showed that DCD lungs managed on ESLP had worse 1-year survival compared to DCD lungs preserved with standard cold storage or with donation after brain death donor lungs. CONCLUSIONS ESLP is used in a small percentage of lung transplants in the US and is not independently associated with 1-year survival. ESLP combined with DCD lungs, however, is associated with worse 1-year survival and warrants further investigation.
Collapse
Affiliation(s)
- Yu Xia
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin, Madison, Wisconsin.
| | - Samuel T Kim
- Department of Surgery, Division of Cardiac Surgery, University of California, Los Angeles, California
| | - Michael Dacey
- Department of Surgery, Division of Cardiac Surgery, University of California, Los Angeles, California
| | - David Sayah
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Los Angeles, California
| | - Reshma Biniwale
- Department of Surgery, Division of Cardiac Surgery, University of California, Los Angeles, California
| | - Abbas Ardehali
- Department of Surgery, Division of Cardiac Surgery, University of California, Los Angeles, California
| |
Collapse
|
8
|
Matsubara K, Miyoshi K, Kawana S, Kubo Y, Shimizu D, Tomioka Y, Shiotani T, Yamamoto H, Tanaka S, Kurosaki T, Ohara T, Okazaki M, Sugimoto S, Matsukawa A, Toyooka S. In vivo lung perfusion for prompt recovery from primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2024; 43:284-292. [PMID: 37852513 DOI: 10.1016/j.healun.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND No proven treatment after the development of primary graft dysfunction (PGD) is currently available. Here, we established a novel strategy of in vivo lung perfusion (IVLP) for the treatment of PGD. IVLP involves the application of an in vivo isolated perfusion circuit to an implanted lung. This study aimed to explore the effectiveness of IVLP vs conventional post-lung transplant (LTx) extracorporeal membrane oxygenation (ECMO) treatment using an experimental swine LTx PGD model. METHODS After 1.5-hour warm ischemia of the donor lungs, a left LTx was performed. Following the confirmation of PGD development, pigs were divided into 3 groups (n = 5 each): control (no intervention), ECMO, and IVLP. After 2 hours of treatment, a 4-hour functional assessment was conducted, and samples were obtained. RESULTS Significantly better oxygenation was achieved in the IVLP group (p ≤ 0.001). Recovery was confirmed immediately and maintained during the following 4-hour observation. The IVLP group also demonstrated better lung compliance than the control group (p = 0.045). A histologic evaluation showed that the lung injury score and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed significantly fewer injuries and a better result in the wet-to-dry weight ratio in the IVLP group. CONCLUSIONS A 2-hour IVLP is technically feasible and allows for prompt recovery from PGD after LTx. The posttransplant short-duration IVLP strategy can complement or overcome the limitations of the current practice for donor assessment and PGD management.
Collapse
Affiliation(s)
- Kei Matsubara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shinichi Kawana
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yujiro Kubo
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Dai Shimizu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuaki Tomioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruchika Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Kurosaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Hoetzenecker K, Benazzo A, Schwarz S, Keshavjee S, Cypel M. The Advent of Semi-Elective Lung Transplantation-Prolonged Static Cold Storage at 10°C. Transpl Int 2024; 37:12310. [PMID: 38317690 PMCID: PMC10839059 DOI: 10.3389/ti.2024.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Since the early days of clinical lung transplantation the preservation of donor organs has become a fairly standardized procedure and most centers do follow similar processes. This includes the use of low-potassium high dextran flush solutions and static cold storage (SCS) in a cooler filled with ice. Depending on the length of SCS, organs usually arrive at the recipient hospital at a temperature of 0°C-4°C. The question of the optimal storage temperature for donor lung preservation has been revisited as data from large animal experiments demonstrated that organs stored at 10°C experience less mitochondrial damage. Thus, prolonged cold ischemic times can be better tolerated at 10°C-even in pre-damaged organs. The clinical applicability of these findings was demonstrated in an international multi-center observational study including three high-volume lung transplant centers. Total clinical preservation times of up to 24 hrs have been successfully achieved in organs stored at 10°C without hampering primary organ function and short-term outcomes. Currently, a randomized-controlled trial (RCT) is recruiting patients with the aim to compare standard SCS on ice with prolonged SCS protocol at 10°C. If, as anticipated, this RCT confirms data from previous studies, lung transplantation could indeed become a semi-elective procedure.
Collapse
Affiliation(s)
- K. Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - A. Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - S. Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - S. Keshavjee
- Toronto Lung Transplant Program, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - M. Cypel
- Toronto Lung Transplant Program, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Zhou AL, Larson EL, Ruck JM, Ha JS, Casillan AJ, Bush EL. Current status and future potential of ex vivo lung perfusion in clinical lung transplantation. Artif Organs 2023; 47:1700-1709. [PMID: 37455548 DOI: 10.1111/aor.14607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lung transplantation is accepted as a well-established and effective treatment for patients with end-stage lung disease. While the number of candidates added to the waitlist continues to rise, the number of transplants performed remains limited by the number of suitable organ donors. Ex vivo lung perfusion (EVLP) emerged as a method of addressing the organ shortage by allowing the evaluation and potential reconditioning of marginal donor lungs or minimizing risks of prolonged ischemic time due to logistical challenges. The currently available FDA-approved EVLP systems have demonstrated excellent outcomes in clinical trials, and retrospective studies have demonstrated similar post-transplant survival between recipients who received marginal donor lungs perfused using EVLP and recipients who received standard criteria lungs stored using conventional methods. Despite this, widespread utilization has plateaued in the last few years, likely due to the significant costs associated with initiating EVLP programs. Centralized, dedicated EVLP perfusion centers are currently being investigated as a potential method of further expanding utilization of this technology. In the preclinical setting, potential applications of EVLP that are currently being studied include prolongation of organ preservation, reconditioning of unsuitable lungs, and further enhancement of already suitable lungs. As adoption of EVLP technology becomes more widespread, we may begin to see future implementation of these potential applications into the clinical setting.
Collapse
Affiliation(s)
- Alice L Zhou
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Emily L Larson
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jessica M Ruck
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jinny S Ha
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Alfred J Casillan
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Errol L Bush
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Pither T, Wang L, Bates L, Morrison M, Charlton C, Griffiths C, Macdonald J, Bigley V, Mavridou M, Barsby J, Borthwick L, Dark J, Scott W, Ali S, Fisher AJ. Modeling the Effects of IL-1β-mediated Inflammation During Ex Vivo Lung Perfusion Using a Split Human Donor Model. Transplantation 2023; 107:2179-2189. [PMID: 37143202 PMCID: PMC10519297 DOI: 10.1097/tp.0000000000004613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND The association between interleukin-1β (IL-1β) concentrations during ex vivo lung perfusion (EVLP) with donor organ quality and post-lung transplant outcome has been demonstrated in several studies. The mechanism underlying IL-1β-mediated donor lung injury was investigated using a paired single-lung EVLP model. METHODS Human lung pairs were dissected into individual lungs and perfused on identical separate EVLP circuits, with one lung from each pair receiving a bolus of IL-1β. Fluorescently labeled human neutrophils isolated from a healthy volunteer were infused into both circuits and quantified in perfusate at regular timepoints. Perfusates and tissues were subsequently analyzed, with perfusates also used in functional assays. RESULTS Neutrophil numbers were significantly lower in perfusate samples collected from the IL-1β-stimulated lungs consistent with increased neutrophil adhesion ( P = 0.042). Stimulated lungs gained significantly more weight than controls ( P = 0.046), which correlated with soluble intercellular adhesion molecule-1 (R 2 = 0.71, P = 0.0043) and von-Willebrand factor (R 2 = 0.39, P = 0.040) in perfusate. RNA expression patterns for inflammatory genes were differentially regulated via IL-1β. Blockade of IL-1β significantly reduced neutrophil adhesion in vitro ( P = 0.025). CONCLUSION These data illustrate the proinflammatory functions of IL-1β in the context of EVLP, suggesting this pathway may be susceptible to therapeutic modulation before transplantation.
Collapse
Affiliation(s)
- Thomas Pither
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lu Wang
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lucy Bates
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Morvern Morrison
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catriona Charlton
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chelsea Griffiths
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jamie Macdonald
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Mavridou
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Barsby
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lee Borthwick
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Dark
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - William Scott
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Fisher
- Regenerative Medicine, Stem Cells and Transplantation Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Sage AT, Donahoe LL, Shamandy AA, Mousavi SH, Chao BT, Zhou X, Valero J, Balachandran S, Ali A, Martinu T, Tomlinson G, Del Sorbo L, Yeung JC, Liu M, Cypel M, Wang B, Keshavjee S. A machine-learning approach to human ex vivo lung perfusion predicts transplantation outcomes and promotes organ utilization. Nat Commun 2023; 14:4810. [PMID: 37558674 PMCID: PMC10412608 DOI: 10.1038/s41467-023-40468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Ex vivo lung perfusion (EVLP) is a data-intensive platform used for the assessment of isolated lungs outside the body for transplantation; however, the integration of artificial intelligence to rapidly interpret the large constellation of clinical data generated during ex vivo assessment remains an unmet need. We developed a machine-learning model, termed InsighTx, to predict post-transplant outcomes using n = 725 EVLP cases. InsighTx model AUROC (area under the receiver operating characteristic curve) was 79 ± 3%, 75 ± 4%, and 85 ± 3% in training and independent test datasets, respectively. Excellent performance was observed in predicting unsuitable lungs for transplantation (AUROC: 90 ± 4%) and transplants with good outcomes (AUROC: 80 ± 4%). In a retrospective and blinded implementation study by EVLP specialists at our institution, InsighTx increased the likelihood of transplanting suitable donor lungs [odds ratio=13; 95% CI:4-45] and decreased the likelihood of transplanting unsuitable donor lungs [odds ratio=0.4; 95%CI:0.16-0.98]. Herein, we provide strong rationale for the adoption of machine-learning algorithms to optimize EVLP assessments and show that InsighTx could potentially lead to a safe increase in transplantation rates.
Collapse
Affiliation(s)
- Andrew T Sage
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laura L Donahoe
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Alaa A Shamandy
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - S Hossein Mousavi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Bonnie T Chao
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Xuanzi Zhou
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Jerome Valero
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sharaniyaa Balachandran
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Aadil Ali
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - George Tomlinson
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Lorenzo Del Sorbo
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, Medical and Surgical Intensive Care Unit, University Health Network, Toronto, ON, Canada
| | - Jonathan C Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Vector Institute, Toronto, ON, Canada.
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Noda K, Chan EG, Furukawa M, Ryan JP, Clifford S, Luketich JD, Sanchez PG. Single-center experience of ex vivo lung perfusion and subsequent lung transplantation. Clin Transplant 2023; 37:e14901. [PMID: 36588340 DOI: 10.1111/ctr.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The safety of lung transplantation using ex vivo lung perfusion (EVLP) has been confirmed in multiple clinical studies; however, limited evidence is currently available regarding the potential effects of EVLP on posttransplant graft complications and survival with mid- to long-term follow-up. In this study, we reviewed our institutional data to better understand the impact of EVLP. METHODS Lungs placed on EVLP from 2014 through 2020 and transplant outcomes were retrospectively analyzed. Data were compared between lungs transplanted and declined after EVLP, between patients with severe primary graft dysfunction (PGD3) and no PGD3 after EVLP, and between matched patients with lungs transplanted with and without EVLP. RESULTS In total, 98 EVLP cases were performed. Changes in metabolic indicators during EVLP were correlated with graft quality and transplantability, but not changes in physiological parameters. Among 58 transplanted lungs after EVLP, PGD3 at 72 h occurred in 36.9% and was associated with preservation time, mechanical support prior to transplant, and intraoperative transfusion volume. Compared with patients without EVLP, patients who received lungs screened with EVLP had a higher incidence of PGD3 and longer ICU and hospital stays. Lung grafts placed on EVLP exhibited a significantly higher chance of developing airway anastomotic ischemic injury by 30 days posttransplant. Acute and chronic graft rejection, pulmonary function, and posttransplant survival were not different between patients with lungs screened on EVLP versus lungs with no EVLP. CONCLUSION EVLP use is associated with an increase of early posttransplant adverse events, but graft functional outcomes and patient survival are preserved.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ernest G Chan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masashi Furukawa
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John P Ryan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Clifford
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James D Luketich
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
14
|
Van De Wauwer C, van Suylen V, Zhang ZL, Verschuuren EAM, van der Bij W, Gan CT, Ubbink R, Erasmus ME. Is logistically motivated ex vivo lung perfusion a good idea? FRONTIERS IN TRANSPLANTATION 2022; 1:988950. [PMID: 38994392 PMCID: PMC11235284 DOI: 10.3389/frtra.2022.988950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2024]
Abstract
Ex vivo lung perfusion (EVLP) is a technique for reconditioning and evaluating lungs. However, the use of EVLP for logistical reasons is still under discussion. In this retrospective study, all EVLPs performed between July 2012 and October 2019 were analyzed for ventilation and perfusion data. After transplantation, primary graft dysfunction (PGD), lung function, chronic lung allograft dysfunction (CLAD)-free survival, and overall survival were analyzed. Fifty EVLPs were performed: seventeen logistic EVLPs led to 15 lung transplantations (LT) and two rejections (LR), and 33 medical EVLPs resulted in 26 lung transplantations (MT) and seven rejections (MR). Pre-EVLP PaO2 was lower for MT than LT (p < 0.05). Dynamic lung compliance remained stable in MT and LT but decreased in MR and LR. Plateau airway pressure started at a higher level in MR (p < 0.05 MT vs. MR at T60) and increased further in LR. After transplantation, there were no differences between MT and LT in PGD, lung function, CLAD-free survival, and overall survival. In addition, the LT group was compared with a cohort group receiving standard donor lungs without EVLP (LTx). There were no significant differences between LT and LTx for PGD, CLAD-free survival, and overall survival. FVC was significantly lower in LT than in LTx after 1 year (p = 0.005). We found that LT lungs appear to perform better than MT lungs on EVLP. In turn, the outcome in the LT group was comparable with the LTx group. Overall, lung transplantation after EVLP for logistic reasons is safe and makes transplantation timing controllable.
Collapse
Affiliation(s)
- Caroline Van De Wauwer
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Vincent van Suylen
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Zhang L. Zhang
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases and Lung Transplantation, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Wim van der Bij
- Department of Pulmonary Diseases and Lung Transplantation, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - C. Tji Gan
- Department of Pulmonary Diseases and Lung Transplantation, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Rinse Ubbink
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Michiel E. Erasmus
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Fumagalli J, Colombo SM, Scaravilli V, Gori F, Pesenti A, Zanella A, Grasselli G. Limitations of arterial partial pressure of oxygen to fraction of inspired oxygen ratio for the evaluation of donor lung function. Artif Organs 2022; 46:2313-2318. [PMID: 35747906 PMCID: PMC9796039 DOI: 10.1111/aor.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/04/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Evaluation of donor lung function relies on the arterial oxygen partial pressure to inspired oxygen fraction ratio (PaO2 /FiO2 ) measurement. Hemodynamic, metabolic derangements, and therapeutic intervention occurring during brain dead observation may influence the evaluation of gas exchange. METHODS We performed a mathematical analysis to explore the influence of the extrapulmonary determinants on the interpretation of PaO2 /FiO2 in the brain-dead donor and during Ex-Vivo Lung Perfusion (EVLP). RESULTS High FiO2 and increased mixed venous oxygen saturation, caused by increased delivery and reduced consumption of oxygen, raise the PaO2 /FiO2 despite substantial intrapulmonary shunt. Anemia does not modify the PaO2 /FiO2 -intrapulmonary shunt relationship. During EVLP, the reduced artero-venous difference in oxygen content increases the PaO2 /FiO2 without this corresponding to an optimal graft function, while the reduced perfusate oxygen-carrying capacity linearizes the PaO2 /FiO2 -intrapulmonary shunt relationship. CONCLUSIONS Adopting PaO2 /FiO2 to evaluate graft suitability for transplantation should account for extrapulmonary factors affecting its interpretation.
Collapse
Affiliation(s)
- Jacopo Fumagalli
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly
| | - Sebastiano Maria Colombo
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly
| | - Vittorio Scaravilli
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly,Department of Biomedical, Surgical, and Dental SciencesUniversity of MilanMilanItaly
| | - Francesca Gori
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly,Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Alberto Zanella
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly,Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca' Granda ‐ Ospedale Maggiore PoliclinicoMilanItaly,Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| |
Collapse
|