1
|
Picado C, Machado-Carvalho L, Roca-Ferrer J. Low Prostaglandin E 2 but High Prostaglandin D 2, a Paradoxical Dissociation in Arachidonic Acid Metabolism in Aspirin-Exacerbated Airway Disease: Role of Airway Epithelium. J Clin Med 2024; 13:7416. [PMID: 39685875 DOI: 10.3390/jcm13237416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
In patients with aspirin-exacerbated respiratory disease (AERD), there is disparate regulation of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Both prostanoids are synthesised by cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). However, while the basal synthesis of PGE2 tends to decrease, that of PGD2 increases in patients with AERD. Furthermore, both behave differently in response to the inhibitory action of NSAIDs on COX-1: PGE2 levels decrease while PGD2 increases. Increased PGD2 release correlates with nasal, bronchial, and extra-pulmonary symptoms caused by aspirin in AERD. The proposed hypothesis establishes that the answer to this paradoxical dissociation can be found in the airway epithelium. This is based on the observation that reduced COX-2 mRNA and/or protein expression is associated with reduced PGE2 synthesis in cultured fibroblast and epithelial cells from AERD compared to patients with asthma who are aspirin-tolerant and healthy subjects. The low production of PGE2 by the airway epithelium in AERD results in an excessive release of alarmins (TSLP, IL-33), which in turn contributes to activating group 2 innate lymphoid cells (ILC2s) and PGD2 synthesis by mast cells and eosinophils. Aspirin, by further increasing the diminished PGE2 regulation capacity in AERD, leads to respiratory reactions associated with the surge in PGD2 from mast cells and eosinophils. In summary, the downregulation of COX-2 and the subsequent low production of PGE2 by airway cells account for the apparently paradoxical increased production of PGD2 by mast cells and eosinophils at the baseline and after aspirin provocation in patients with AERD. A better understanding of the role of the airway epithelium would contribute to elucidating the mechanism of AERD.
Collapse
Affiliation(s)
- César Picado
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Liliana Machado-Carvalho
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
2
|
Szatkowski P, Gielicz A, Stępień A, Hartwich P, Kacorzyk R, Plutecka H, Ćmiel A, Trąd-Wójcik G, Sanak M, Mastalerz L. Unique effect of aspirin on local 15-oxo-eicosatetraenoic acid synthesis in asthma patients with aspirin hypersensitivity. Clin Transl Allergy 2024; 14:e70004. [PMID: 39722441 DOI: 10.1002/clt2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 10/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (NSAIDs-ERD) is characterized by altered arachidonic acid (AA) metabolism. Aspirin hypersensitivity is diagnosed using aspirin challenge, while induced sputum is collected to perform cell counts and to identify local biomarkers in induced sputum supernatant (ISS). This study aimed to assess the levels of a newly identified eicosanoid, 15-oxo-eicosatetraenoic acid (15-oxo-ETE), in ISS at baseline and during aspirin-induced bronchospasm in patients with NSAIDs-ERD. METHODS Oral aspirin challenge was performed in 27 patients with NSAIDs-ERD and in 17 patients with aspirin-tolerant asthma (ATA) serving as controls. Sputum was collected before and after aspirin challenge to determine eosinophil, neutrophil, macrophage, and lymphocyte counts as well as the concentration of AA metabolites via 15-lipoxygenase-1 (15-LOX-1) and 5-LOX pathways in ISS. Chromatography-tandem mass spectrometry was used to measure ISS levels of 15-oxo-ETE, 15-hydroxyeicosatetranoic acid (15-HETE), and leukotriene E4 (LTE4). RESULTS At baseline, ISS levels of 15-oxo-ETE were higher in NSAIDs-ERD than in ATA (p = 0.04). In contrast, baseline 15-HETE levels in ISS were lower in patients with NSAIDs-ERD (p = 0.03). After aspirin challenge, 15-oxo-ETE levels decreased only in patients with NSAIDs-ERD (p = 0.001) who developed bronchospasm. In both study groups, there was a reduction in sputum macrophage count after aspirin challenge (p = 0.03 and p = 0.02, respectively) irrespective of bronchospasm. CONCLUSIONS Patients with NSAIDs-ERD are characterized by higher baseline 15-oxo-ETE levels in ISS than patients with ATA. Aspirin-induced bronchospasm inhibited the local generation of 15-oxo-ETE.
Collapse
Affiliation(s)
- Piotr Szatkowski
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Gielicz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Stępień
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Patryk Hartwich
- Department of Otolaryngology, Jagiellonian University Medical College, Krakow, Poland
| | - Radosław Kacorzyk
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Hanna Plutecka
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Gabriela Trąd-Wójcik
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Mastalerz L, Trąd G, Szatkowski P, Ćmiel A, Gielicz A, Kacorzyk R, Plutecka H, Szaleniec J, Gawlewicz-Mroczka A, Jakieła B, Sanak M. Aspirin hypersensitivity diagnostic index (AHDI): In vitro test for diagnosing of N-ERD based on urinary 15-oxo-ETE and LTE 4 excretion. Allergy 2024. [PMID: 39180224 DOI: 10.1111/all.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND 15-oxo-eicosatetraenoic acid (15-oxo-ETE), is a product of arachidonic acid (AA) metabolism in the 15-lipoxygenase-1 (15-LOX-1) pathway. 15-oxo-ETE was overproduced in the nasal polyps of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD). In this study we investigated the systemic biosynthesis of 15-oxo-ETE and leukotriene E4 (LTE4) and assessed their diagnostic value to identify patients with N-ERD. METHODS The study included 64 patients with N-ERD, 59 asthmatics who tolerated aspirin well (ATA), and 51 healthy controls. A thorough clinical characteristics of asthmatics included computed tomography of paranasal sinuses. Plasma and urinary 15-oxo-ETE levels, and urinary LTE4 excretion were measured using high-performance liquid chromatography and tandem mass spectrometry. Repeatability and precision of the measurements were tested. RESULTS Plasma 15-oxo-ETE levels were the highest in N-ERD (p < .001). A receiver operator characteristic (ROC) revealed that 15-oxo-ETE had certain sensitivity (64.06% in plasma, or 88.24% in urine) for N-ERD discrimination, while the specificity was rather limited. Modeling of variables allowed to construct the Aspirin Hypersensitivity Diagnostic Index (AHDI) based on urinary LTE4-to-15-oxo-ETE excretion corrected for sex and the Lund-Mackay score of chronic rhinosinusitis. AHDI outperformed single measurements in discrimination of N-ERD among asthmatics with an area under ROC curve of 0.889, sensitivity of 81.97%, specificity of 87.23%, and accuracy of 86.87%. CONCLUSIONS We confirmed 15-oxo-ETE as a second to cysteinyl leukotrienes biomarker of N-ERD. An index based on these eicosanoids corrected for sex and Lund-Mackay score has a similar diagnostic value as gold standard oral aspirin challenge in the studied group of patients with asthma.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Gabriela Trąd
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Piotr Szatkowski
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Anna Gielicz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Radosław Kacorzyk
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Hanna Plutecka
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szaleniec
- Department of Otolaryngology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Bogdan Jakieła
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Gress C, Fuchs M, Carstensen-Aurèche S, Müller M, Hohlfeld JM. Prostaglandin D2 receptor 2 downstream signaling and modulation of type 2 innate lymphoid cells from patients with asthma. PLoS One 2024; 19:e0307750. [PMID: 39052598 PMCID: PMC11271944 DOI: 10.1371/journal.pone.0307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11β-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11β-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.
Collapse
Affiliation(s)
- Christina Gress
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Saskia Carstensen-Aurèche
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Jens M. Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Mayorga C, Ariza A, Muñoz-Cano R, Sabato V, Doña I, Torres MJ. Biomarkers of immediate drug hypersensitivity. Allergy 2024; 79:601-612. [PMID: 37947156 DOI: 10.1111/all.15933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Immediate drug hypersensitivity reactions (IDHRs) are a burden for patients and the health systems. This problem increases when taking into account that only a small proportion of patients initially labelled as allergic are finally confirmed after an allergological workup. The diverse nature of drugs involved will imply different interactions with the immunological system. Therefore, IDHRs can be produced by a wide array of mechanisms mediated by the drug interaction with specific antibodies or directly on effector target cells. These heterogeneous mechanisms imply an enhanced complexity for an accurate diagnosis and the identification of the phenotype and endotype at early stages of the reaction is of vital importance. Currently, several endophenotypic categories (type I IgE/non-IgE, cytokine release, Mast-related G-protein coupled receptor X2 (MRGPRX2) or Cyclooxygenase-1 (COX-1) inhibition and their associated biomarkers have been proposed. A precise knowledge of endotypes will permit to discriminate patients within the same phenotype, which is crucial in order to personalise diagnosis, future treatment and prevention to improve the patient's quality of life.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
| | - Rosa Muñoz-Cano
- Allergy Department, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer - IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology, Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Inmaculada Doña
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Maria J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| |
Collapse
|
6
|
Çelik GE, Aydin Ö, Güloğlu D, Seçil D, Melli M, Doğu F, Ikinciogullari A, Sin BA, Demirel Y, Misirligil Z. What happens to basophils and tryptase, LXA 4 and CysLTs during aspirin desensitization? J Asthma 2022:1-11. [PMID: 36472920 DOI: 10.1080/02770903.2022.2156352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Aspirin desensitization (AD) is an effective treatment in patients with non-steroidal anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (NERD) by providing inhibitory effect on symptoms and polyp recurrence. However, limited data is available on how AD works. We aimed to study comprehensively the mechanisms underlying AD by examining basophil activation (CD203c upregulation), mediator-releases of tryptase, CysLT, and LXA4, and LTB4 receptor expression for the first 3 months of AD. METHODS The study was conducted in patients with NERD who underwent AD (group 1: n = 23), patients with NERD who received no desensitization (group 2: n = 22), and healthy volunteers (group 3, n = 13). All participants provided blood samples for flow cytometry studies (CD203c and LTB4 receptor), and mediator releases (CysLT, LXA4, and tryptase) for the relevant time points determined. RESULTS All baseline parameters of CD203c and LTB4 receptor expressions, tryptase, CysLT, and LXA4 releases were similar in each group (p > 0.05). In group 1, CD203c started to be upregulated at the time of reactions during AD, and continued to be high for 3 months when compared to controls. All other study parameters were comparable with baseline and at the other time points in each group (p > 0.05). CONCLUSION Although basophils are active during the first 3 months of AD, no releases of CysLT, tryptase or LXA4 exist. Therefore, our results suggest that despite active basophils, inhibition of mediators can at least partly explain underlying the mechanism in the first three months of AD.
Collapse
Affiliation(s)
- Gülfem E Çelik
- Department of Chest Disease, Division of Immunology and Allergy, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Ömür Aydin
- Department of Chest Disease, Division of Immunology and Allergy, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Deniz Güloğlu
- Division of Pediatric Allergy and Immunology, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Derya Seçil
- Department of Chest Disease, Division of Immunology and Allergy, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Mehmet Melli
- Department of Medical Pharmacology, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Figen Doğu
- Division of Pediatric Allergy and Immunology, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Aydan Ikinciogullari
- Division of Pediatric Allergy and Immunology, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Betül A Sin
- Department of Chest Disease, Division of Immunology and Allergy, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Yavuz Demirel
- Department of Chest Disease, Division of Immunology and Allergy, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| | - Zeynep Misirligil
- Department of Chest Disease, Division of Immunology and Allergy, Ankara University School of Medicine, Dikimevi/Ankara, Turkey
| |
Collapse
|
7
|
Potaczek DP, Trąd G, Sanak M, Garn H, Mastalerz L. Local and Systemic Production of Pro-Inflammatory Eicosanoids Is Inversely Related to Sensitization to Aeroallergens in Patients with Aspirin-Exacerbated Respiratory Disease. J Pers Med 2022; 12:447. [PMID: 35330446 PMCID: PMC8955638 DOI: 10.3390/jpm12030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 01/15/2023] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is characterized by overproduction of the pro-inflammatory eicosanoids. Although immunoglobulin E-mediated sensitization to aeroallergens is common among AERD patients, it does not belong to the defining disease characteristics. In this study of 133 AERD patients, we sought to find a relationship between sensitization to aeroallergens and local (leukotriene E4, prostaglandin E2 and prostaglandin D2) and/or systemic (leukotriene E4) production of arachidonic acid metabolites. Interestingly, a negative association between pro-inflammatory eicosanoid levels in induced sputum supernatant or urine and sensitization to aeroallergens was observed. This inverse relationship might suggest the presence of a protective effect of atopic sensitization to aeroallergens against stronger local airway inflammation and higher systemic AERD-related inflammatory activity.
Collapse
Affiliation(s)
- Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, 35043 Marburg, Germany; (D.P.P.); (H.G.)
| | - Gabriela Trąd
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland; (G.T.); (M.S.)
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland; (G.T.); (M.S.)
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, 35043 Marburg, Germany; (D.P.P.); (H.G.)
| | - Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland; (G.T.); (M.S.)
| |
Collapse
|
8
|
Rhyou HI, Nam YH, Park HS. Emerging Biomarkers Beyond Leukotrienes for the Management of Nonsteroidal Anti-inflammatory Drug (NSAID)-Exacerbated Respiratory Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:153-167. [PMID: 35255534 PMCID: PMC8914608 DOI: 10.4168/aair.2022.14.2.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is a unique condition characterized by aspirin/NSAID hypersensitivity, adult-onset asthma, and/or chronic rhinosinusitis with nasal polyps. Arachidonic acid metabolism dysregulation and intense eosinophilic/type 2 inflammation are central mechanisms in NERD. Studies have been conducted on various biomarkers, and urinary leukotriene E4 is considered the most available biomarker of NERD. However, the pathophysiology of NERD is heterogeneous and complex. Epithelial cells and platelets can interact with immune cells in NERD, and novel biomarkers related to these interactions have recently been investigated. We summarize emerging novel biomarkers of NERD and discuss their roles in the management of NERD.
Collapse
Affiliation(s)
- Hyo-In Rhyou
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young-Hee Nam
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
9
|
Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, Müller M. Prostaglandin D 2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP 2 receptor. Respir Res 2021; 22:262. [PMID: 34620168 PMCID: PMC8499518 DOI: 10.1186/s12931-021-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11β-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11β-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.
Collapse
Affiliation(s)
- Saskia Carstensen
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Christina Gress
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Jens M Hohlfeld
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - David A Sandham
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Meike Müller
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
10
|
Celejewska-Wójcik N, Kania A, Górka K, Nastałek P, Wójcik K, Gielicz A, Mastalerz L, Sanak M, Sładek K. Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:1415-1424. [PMID: 34079245 PMCID: PMC8164670 DOI: 10.2147/copd.s298678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Lipid mediators, particularly eicosanoids, are associated with airway inflammation, especially with the eosinophilic influx. This study aimed to measure lipid mediators and cells in induced sputum, that could possibly reflect the inflammatory process in the bronchial tree of COPD subjects. Patients and Methods Eighty patients diagnosed with COPD and 37 healthy controls participated in the study. Induced sputum samples were ascertained for differential cell count and induced sputum supernatant concentrations of selected eicosanoids by the means of gas chromatography/mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry. Results Increased sputum eosinophilia was associated with higher concentrations of selected proinflammatory eicosanoids. In COPD subjects prostaglandin D2 and 11-dehydro-thromboxane B2 correlated negatively with airway obstruction measured by FEV1 and FEV1/FVC values. COPD subjects with disease exacerbations during past 12 months had significantly higher concentrations of prostaglandin D2, 12-oxo-eicosatetraenoic acid and 5-oxo-eicosatetraenoic acid. Conclusion Stable COPD is often associated with eosinophil influx in the lower airways and elevated concentrations of eicosanoids that is reflected by some disease characteristics.
Collapse
Affiliation(s)
- Natalia Celejewska-Wójcik
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksander Kania
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Górka
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Nastałek
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Wójcik
- 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Gielicz
- Department of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lucyna Mastalerz
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Sanak
- Department of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
11
|
Tyrak KE, Pajdzik K, Jakieła B, Kupryś-Lipińska I, Ćmiel A, Kacorzyk R, Trąd G, Kuna P, Sanak M, Mastalerz L. Biomarkers for predicting response to aspirin therapy in aspirin-exacerbated respiratory disease. Clin Exp Allergy 2021; 51:1046-1056. [PMID: 33905579 PMCID: PMC9292205 DOI: 10.1111/cea.13886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
Background Aspirin desensitization followed by daily aspirin use is an effective treatment for aspirin‐exacerbated respiratory disease (AERD). Objective To assess clinical features as well as genetic, immune, cytological and biochemical biomarkers that might predict a positive response to high‐dose aspirin therapy in AERD. Methods We enrolled 34 AERD patients with severe asthma who underwent aspirin desensitization followed by 52‐week aspirin treatment (650 mg/d). At baseline and at 52 weeks, clinical assessment was performed; phenotypes based on induced sputum cells were identified; eicosanoid, cytokine and chemokine levels in induced sputum supernatant were determined; and induced sputum expression of 94 genes was assessed. Responders to high‐dose aspirin were defined as patients with improvement in 5‐item Asthma Control Questionnaire score, 22‐item Sino‐Nasal Outcome Test (SNOT‐22) score and forced expiratory volume in 1 second at 52 weeks. Results There were 28 responders (82%). Positive baseline predictors of response included female sex (p = .002), higher SNOT‐22 score (p = .03), higher blood eosinophil count (p = .01), lower neutrophil percentage in induced sputum (p = .003), higher expression of the hydroxyprostaglandin dehydrogenase gene, HPGD (p = .004) and lower expression of the proteoglycan 2 gene, PRG2 (p = .01). The best prediction model included Asthma Control Test and SNOT‐22 scores, blood eosinophils and total serum immunoglobulin E. Responders showed a marked decrease in sputum eosinophils but no changes in eicosanoid levels. Conclusions and Clinical Relevance Female sex, high blood eosinophil count, low sputum neutrophil percentage, severe nasal symptoms, high HPGD expression and low PRG2 expression may predict a positive response to long‐term high‐dose aspirin therapy in patients with AERD.
Collapse
Affiliation(s)
- Katarzyna E Tyrak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Kinga Pajdzik
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bogdan Jakieła
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Izabela Kupryś-Lipińska
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Adam Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Cracow, Poland
| | - Radosław Kacorzyk
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Gabriela Trąd
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
12
|
Tyrak KE, Pajdzik K, Konduracka E, Ćmiel A, Jakieła B, Celejewska‐Wójcik N, Trąd G, Kot A, Urbańska A, Zabiegło E, Kacorzyk R, Kupryś‐Lipińska I, Oleś K, Kuna P, Sanak M, Mastalerz L. Artificial neural network identifies nonsteroidal anti-inflammatory drugs exacerbated respiratory disease (N-ERD) cohort. Allergy 2020; 75:1649-1658. [PMID: 32012310 PMCID: PMC7383769 DOI: 10.1111/all.14214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022]
Abstract
Background To date, there has been no reliable in vitro test to either diagnose or differentiate nonsteroidal anti‐inflammatory drug (NSAID)–exacerbated respiratory disease (N‐ERD). The aim of the present study was to develop and validate an artificial neural network (ANN) for the prediction of N‐ERD in patients with asthma. Methods This study used a prospective database of patients with N‐ERD (n = 121) and aspirin‐tolerant (n = 82) who underwent aspirin challenge from May 2014 to May 2018. Eighteen parameters, including clinical characteristics, inflammatory phenotypes based on sputum cells, as well as eicosanoid levels in induced sputum supernatant (ISS) and urine were extracted for the ANN. Results The validation sensitivity of ANN was 94.12% (80.32%‐99.28%), specificity was 73.08% (52.21%‐88.43%), and accuracy was 85.00% (77.43%‐92.90%) for the prediction of N‐ERD. The area under the receiver operating curve was 0.83 (0.71‐0.90). Conclusions The designed ANN model seems to have powerful prediction capabilities to provide diagnosis of N‐ERD. Although it cannot replace the gold‐standard aspirin challenge test, the implementation of the ANN might provide an added value for identification of patients with N‐ERD. External validation in a large cohort is needed to confirm our results.
Collapse
Affiliation(s)
- Katarzyna Ewa Tyrak
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Kinga Pajdzik
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Ewa Konduracka
- Coronary and Heart Failure Department Jagiellonian University School of MedicineJohn Paul II Hospital Cracow Poland
| | - Adam Ćmiel
- Department of Applied Mathematics AGH University of Science and Technology Cracow Poland
| | - Bogdan Jakieła
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | | | - Gabriela Trąd
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Adrianna Kot
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Anna Urbańska
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Ewa Zabiegło
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Radosław Kacorzyk
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | | | - Krzysztof Oleś
- Department of Oncological and Reconstructive Surgery The Maria Sklodowska‐Curie Memorial Cancer Center and Institute of Oncology Gliwice Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy Medical University of Łódź Łódź Poland
| | - Marek Sanak
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| | - Lucyna Mastalerz
- 2nd Department of Internal Medicine Jagiellonian University Medical College Cracow Poland
| |
Collapse
|
13
|
Inflammatory macrophage memory in nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:587-599. [PMID: 32540397 DOI: 10.1016/j.jaci.2020.04.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. OBJECTIVE This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. METHODS Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. RESULTS This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. CONCLUSIONS Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD.
Collapse
|
14
|
Wang T, Zhang X, Ye Y, Shi R, Ma Y. Quantification of prostaglandins E 2 and D 2 using liquid chromatography-tandem mass spectrometry in a mouse ear edema model. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2865-2871. [PMID: 32930210 DOI: 10.1039/d0ay00506a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A sensitive, specific, and accurate high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for the quantification of prostaglandins D2 (PGD2) and E2 (PGE2) in a mouse ear edema model. We used activated charcoal to obtain PG-free ear samples. The chromatographic separation was performed using a Hypersil Gold C18 column. The limit of detection of each PG was 0.4 ng mL-1, and the intra- and inter-assay estimates of precision and accuracy were <14.5 and 94.2-102.9%, respectively. Stability studies showed that all analytes were stable under various storage conditions and analytical processes. The developed and validated method was successfully used to investigate the anti-inflammatory effects of cultured bear bile powder (CBBP) by quantitatively determining PGE2 and PGD2 levels in mouse ear edema samples. These results showed that CBBP significantly inhibited the xylene-induced ear edema in mice and reversed the xylene-induced elevation of PGE2 and PGD2 levels. These results provide useful data about the anti-inflammatory bioactivities in tissues, mediated by the reduction of PGE2 and PGD2 levels, and may further encourage research and development studies of CBBP for its use as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xueyan Zhang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yiwen Ye
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Stevens WW, Staudacher AG, Hulse KE, Carter RG, Winter DR, Abdala-Valencia H, Kato A, Suh L, Norton JE, Huang JH, Peters AT, Grammer LC, Price CPE, Conley DB, Shintani-Smith S, Tan BK, Welch KC, Kern RC, Schleimer RP. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:600-612. [PMID: 32371071 DOI: 10.1016/j.jaci.2020.04.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), and an intolerance of medications that inhibit cyclooxygenase-1. Patients with AERD have more severe upper and lower respiratory tract disease than do aspirin-tolerant patients with CRSwNP. A dysregulation in arachidonic acid metabolism is thought to contribute to the enhanced sinonasal inflammation in AERD. OBJECTIVE Our aim was to utilize an unbiased approach investigating arachidonic acid metabolic pathways in AERD. METHODS Single-cell RNA sequencing (10× Genomics, Pleasanton, Calif) was utilized to compare the transcriptional profile of nasal polyp (NP) cells from patients with AERD and patients with CRSwNP and map differences in the expression of select genes among identified cell types. Findings were confirmed by traditional real-time PCR. Lipid mediators in sinonasal tissue were measured by mass spectrometry. Localization of various proteins within NPs was assessed by immunofluorescence. RESULTS The gene encoding for 15-lipooxygenase (15-LO), ALOX15, was significantly elevated in NPs of patients with AERD compared to NPs of patients with CRSwNP (P < .05) or controls (P < .001). ALOX15 was predominantly expressed by epithelial cells. Expression levels significantly correlated with radiographic sinus disease severity (r = 0.56; P < .001) and were associated with asthma. The level of 15-oxo-eicosatetraenoic acid (15-Oxo-ETE), a downstream product of 15-LO, was significantly elevated in NPs from patients with CRSwNP (27.93 pg/mg of tissue) and NPs from patients with AERD (61.03 pg/mg of tissue) compared to inferior turbinate tissue from controls (7.17 pg/mg of tissue [P < .001]). Hydroxyprostaglandin dehydrogenase, an enzyme required for 15-Oxo-ETE synthesis, was predominantly expressed in mast cells and localized near 15-LO+ epithelium in NPs from patients with AERD. CONCLUSIONS Epithelial and mast cell interactions, leading to the synthesis of 15-Oxo-ETE, may contribute to the dysregulation of arachidonic acid metabolism via the 15-LO pathway and to the enhanced sinonasal disease severity observed in AERD.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Anna G Staudacher
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Caroline P E Price
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
16
|
Celejewska‐Wójcik N, Wójcik K, Ignacak‐Popiel M, Ćmiel A, Tyrak K, Gielicz A, Kania A, Nastałek P, Sanak M, Mastalerz L. Subphenotypes of nonsteroidal antiinflammatory disease-exacerbated respiratory disease identified by latent class analysis. Allergy 2020; 75:831-840. [PMID: 31803947 PMCID: PMC7216982 DOI: 10.1111/all.14141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Induced sputum (IS) allows to measure mediators of asthmatic inflammation in bronchial secretions. NSAID-exacerbated respiratory disease (NERD) is recognized as a distinct asthma phenotype, usually with a severe course, eosinophilic airway inflammation, and increased production of pro-inflammatory eicosanoids. A more insightful analysis of NERD patients has shown this phenotype to be nonhomogeneous. OBJECTIVE We aimed to identify possible subphenotypes in a cohort of NERD patients with the means of latent class analysis (LCA). METHODS A total of 95 asthma patients with aspirin hypersensitivity underwent sputum induction. High-performance liquid chromatography or gas chromatography coupled with mass spectrometry was used to profile eicosanoids in induced sputum supernatant (ISS). Sixteen variables covering clinical characteristics, IS inflammatory cells, and eicosanoids were considered in the LCA. RESULTS Three classes (subphenotypes) were distinguished within the NERD cohort. Class 1 subjects had mild-to-moderate asthma, an almost equal distribution of inflammatory cell patterns, the lowest concentrations of eicosanoids, and logLTE4 /logPGE2 ratio. Class 2 represented severe asthma with impaired lung function despite high doses of steroids. High sputum eosinophilia was in line with higher pro-inflammatory LTE4 in ISS and the highest logLTE4 /logPGE2 ratio. Class 3 subjects had mild-to-moderate asthma and were also characterized by eosinophilic airway inflammation, yet increased production of pro- (LTE4 , PGD2 and 11-dehydro-TBX2 ) was balanced by anti-inflammatory PGE2 . The value of logLTE4 /logPGE2 was between values calculated for classes 1 and 3, similarly to disease control and severity. CONCLUSIONS LCA revealed three distinct NERD subphenotypes. Our results support a more complex pathobiology of aspirin hypersensitivity. Considering NERD heterogeneity, the relationship between inflammatory pathways and clinical manifestations of asthma may lead to more individualized treatment in difficult to treat patients in the future.
Collapse
Affiliation(s)
- Natalia Celejewska‐Wójcik
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Krzysztof Wójcik
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Maria Ignacak‐Popiel
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Adam Ćmiel
- Department of Applied MathematicsAGH University of Science and TechnologyCracowPoland
| | - Katarzyna Tyrak
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Anna Gielicz
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Aleksander Kania
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Paweł Nastałek
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Marek Sanak
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Lucyna Mastalerz
- II Department of Internal MedicineFaculty of MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
17
|
Doña I, Pérez‐Sánchez N, Eguiluz‐Gracia I, Muñoz-Cano R, Bartra J, Torres MJ, Cornejo‐García JA. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy 2020; 75:561-575. [PMID: 31469167 DOI: 10.1111/all.14032] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), the medications most commonly used for treating pain and inflammation, are the main triggers of drug hypersensitivity reactions. The latest classification of NSAIDs hypersensitivity by the European Academy of Allergy and Clinical Immunology (EAACI) differentiates between cross-hypersensitivity reactions (CRs), associated with COX-1 inhibition, and selective reactions, associated with immunological mechanisms. Three phenotypes fill into the first group: NSAIDs-exacerbated respiratory disease, NSAIDs-exacerbated cutaneous disease and NSAIDs-induced urticaria/angioedema. Two phenotypes fill into the second one: single-NSAID-induced urticaria/angioedema/anaphylaxis and single-NSAID-induced delayed reactions. Diagnosis of NSAIDs hypersensitivity is hampered by different factors, including the lack of validated in vitro biomarkers and the uselessness of skin tests. The advances achieved over recent years recommend a re-evaluation of the EAACI classification, as it does not consider other phenotypes such as blended reactions (coexistence of cutaneous and respiratory symptoms) or food-dependent NSAID-induced anaphylaxis. In addition, it does not regard the natural evolution of phenotypes and their potential interconversion, the development of tolerance over time or the role of atopy. Here, we address these topics. A state of the art on the underlying mechanisms and on the approaches for biomarkers discovery is also provided, including genetic studies and available information on transcriptomics and metabolomics.
Collapse
Affiliation(s)
- Inmaculada Doña
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Natalia Pérez‐Sánchez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
| | - Ibon Eguiluz‐Gracia
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Rosa Muñoz-Cano
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - Joan Bartra
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - María José Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Malaga Spain
| | | |
Collapse
|
18
|
Doña I, Jurado‐Escobar R, Perkins JR, Ayuso P, Plaza‐Serón MC, Pérez‐Sánchez N, Campo P, Bogas‐Herrera G, Bartra J, Torres MJ, Sanak M, Cornejo‐García JA. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. Allergy 2019; 74:1135-1144. [PMID: 30667070 DOI: 10.1111/all.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The role of arachidonic acid metabolites in NSAID-induced hypersensitivity has been studied in depth for NSAID-exacerbated respiratory disease (NERD) and NSAID-exacerbated cutaneous disease (NECD). However, no information is available for NSAID-induced urticarial/angioedema (NIUA), despite it being the most frequent clinical entity induced by NSAID hypersensitivity. We evaluated changes in leukotriene and prostaglandin metabolites for NIUA patients, using patients with NECD and single-NSAID-induced urticaria/angioedema or anaphylaxis (SNIUAA) for comparison. METHODS Urine samples were taken from patients with confirmed NSAID-induced urticaria and healthy controls, at baseline and at various time intervals after ASA administration. Eicosanoid measurement was performed using high-performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. RESULTS No differences were found between groups at baseline. Following ASA administration, LTE4 and 9α,11β-PGF2 levels were increased in both NIUA and NECD patients compared to baseline, rising initially, before decreasing toward initial levels. In addition, the levels of these metabolites were higher in NIUA and NECD when compared with the SNIUAA and control groups after ASA administration. No changes were found with respect to baseline values for SNIUAA and control groups. CONCLUSIONS We present for the first time data regarding the role of COX-1 inhibition in NIUA. Patients with this entity show a similar pattern eicosanoid levels following ASA challenge to those with NECD. Further studies will help ascertain the cell populations involved and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Inmaculada Doña
- Allergy Unit IBIMA Regional University Hospital of Malaga UMA Malaga Spain
- ARADyAL Network RD16/0006/0001 Carlos III Health Institute Madrid Spain
| | | | - James R. Perkins
- Research Laboratory IBIMA Regional University Hospital of Malaga UMA Malaga Spain
| | - Pedro Ayuso
- Research Laboratory IBIMA Regional University Hospital of Malaga UMA Malaga Spain
| | | | | | - Paloma Campo
- Allergy Unit IBIMA Regional University Hospital of Malaga UMA Malaga Spain
- ARADyAL Network RD16/0006/0001 Carlos III Health Institute Madrid Spain
| | | | - Joan Bartra
- ARADyAL Network RD16/0006/0007 Carlos III Health Institute Madrid Spain
- Unitat d′Allergia Servei de Pneumologia Hospital Clinic Universitat de Barcelona Barcelona Spain
- Institut d′Investigacions Biomediques August Pi I Sunyer (IDIBAPS) Barcelona Spain
| | - María José Torres
- Allergy Unit IBIMA Regional University Hospital of Malaga UMA Malaga Spain
- ARADyAL Network RD16/0006/0001 Carlos III Health Institute Madrid Spain
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - José Antonio Cornejo‐García
- ARADyAL Network RD16/0006/0001 Carlos III Health Institute Madrid Spain
- Research Laboratory IBIMA Regional University Hospital of Malaga UMA Malaga Spain
| |
Collapse
|
19
|
Mastalerz L, Tyrak KE, Ignacak M, Konduracka E, Mejza F, Ćmiel A, Buczek M, Kot A, Oleś K, Sanak M. Prostaglandin E 2 decrease in induced sputum of hypersensitive asthmatics during oral challenge with aspirin. Allergy 2019; 74:922-932. [PMID: 30446997 DOI: 10.1111/all.13671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND A special regulatory role for prostaglandin E2 (PGE2 ) has been postulated in nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD). OBJECTIVE To investigate the effect of systemic aspirin (acetylsalicylic acid) administration on airway PGE2 biosynthesis in induced sputum supernatant (ISS) among subjects with NERD or aspirin-tolerant asthma with chronic rhinosinusitis with nasal polyposis (ATA-CRSwNP), as well as healthy controls (HC). METHODS Induced sputum (IS) was collected from patients with NERD (n = 26), ATA-CRSwNP (n = 17), and HC (n = 21) at baseline and after aspirin challenge. Sputum differential cell count and IS supernatant (ISS) levels of prostanoids, PGE2 , 8-iso-PGE2 , tetranor-PGE-M, 8-iso-PGF2 α, and leukotriene C4 , D4 , and E4 , were determined using mass spectrometry. Urinary excretion of LTE4 was measured by ELISA. RESULTS NERD subjects had elevated sputum eosinophilic count as compared to ATA-CRSwNP and HC (median NERD 9.1%, ATA-CRSwNP 2.1%, and HC 0.4%; P < 0.01). Baseline ISS levels of PGE2 were higher in asthmatics as compared to HC at baseline (NERD vs HC P = 0.04, ATA-CRSwNP vs HC P < 0.05). Post-challenge ISS levels of PGE2 compared to baseline significantly decreased in NERD and HC (P < 0.01 and P = 0.01), but not in ATA-CRSwNP. In NERD, a similar decrease in PGE2 as in HC resulted from 2.8 times lower dose of aspirin. CONCLUSION Aspirin-precipitated bronchoconstriction is associated with a decrease in airway PGE2 biosynthesis. These results support the mechanism of PGE2 biosynthesis inhibition as a trigger for bronchoconstriction in NERD.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| | - Katarzyna E. Tyrak
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| | - Maria Ignacak
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| | - Ewa Konduracka
- Coronary and Heart Failure Department Jagiellonian University School of Medicine John Paul II Hospital Cracow Poland
| | - Filip Mejza
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| | - Adam Ćmiel
- Department of Applied Mathematics AGH University of Science and Technology Cracow Poland
| | - Michał Buczek
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| | - Adrianna Kot
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| | - Krzysztof Oleś
- Department of Oncological and Reconstructive Surgery The Maria Sklodowska‐Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch Gliwice Poland
| | - Marek Sanak
- Department of Internal Medicine Jagiellonian University School of Medicine Cracow Poland
| |
Collapse
|
20
|
Tyrak KE, Kupryś-Lipińska I, Czarnobilska E, Jakieła B, Pajdzik K, Ćmiel A, Plutecka H, Koziej M, Gawrońska A, Konduracka E, Kuna P, Sanak M, Mastalerz L. Sputum biomarkers during aspirin desensitization in nonsteroidal anti-inflammatory drugs exacerbated respiratory disease. Respir Med 2019; 152:51-59. [PMID: 31128610 DOI: 10.1016/j.rmed.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aspirin desensitization (AD) is an effective and safe therapeutic option for patients with nonsteroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory disease (N-ERD). The mechanisms driving its beneficial effects remain poorly understood. OBJECTIVE To investigate the effect of long-term AD on clinical, biochemical and radiological changes in N-ERD patients. METHODS The study group consisted of twenty-three individuals with N-ERD who underwent AD, followed by ingestion of 325 mg aspirin twice daily. Twenty patients completed the 52 weeks of AD. The following evaluations were conducted at baseline and in the 52nd week of AD: (i) clinical: asthma exacerbations, Asthma Control Test (ACT), Visual Analogue Scale (VAS) for the assessment of nasal symptoms; (ii) blood and induced sputum supernatant (ISS) periostin, (iii) phenotypes based on induced sputum (IS) cells, (iiii) ISS and nasal lavage (NL) concentration of prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), tetranor-PGD-M, tetranor-PGE-M, 8-iso-PGE2, leukotriene B4 (LTB4), LTC4, LTD4 and LTE4, and urine LTE4. RESULTS A significant improvement was observed in ACT (P = 0.02) and VAS score (P = 0.008) in the 52nd week of AD. ISS periostin and IS eosinophil count decreased significantly in the 52nd week of AD (P = 0.04 and P = 0.01, respectively). ISS and NL eicosanoid concentrations did not change following long-term AD. CONCLUSION and Clinical Relevance: AD is associated with a decrease in sputum periostin biosynthesis, which may prevent the recruitment of eosinophils into respiratory tissue and be one of explanation of the clinical benefits of AD. Long-term aspirin administration does not lead to an imbalance between pro- and anti-inflammatory ISS eicosanoids.
Collapse
Affiliation(s)
- Katarzyna Ewa Tyrak
- II Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Izabela Kupryś-Lipińska
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Ewa Czarnobilska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Cracow, Poland
| | - Bogdan Jakieła
- II Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Kinga Pajdzik
- II Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Adam Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Cracow, Poland
| | - Hanna Plutecka
- II Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Mateusz Koziej
- Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Gawrońska
- Department of Radiology/Diagnostic Imaging, University Hospital in Cracow, Cracow, Poland
| | - Ewa Konduracka
- Coronary and Heart Failure Department, Jagiellonian University School of Medicine, John Paul II Hospital, Cracow, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek Sanak
- II Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Lucyna Mastalerz
- II Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
21
|
Rodríguez-Jiménez JC, Moreno-Paz FJ, Terán LM, Guaní-Guerra E. Aspirin exacerbated respiratory disease: Current topics and trends. Respir Med 2018; 135:62-75. [PMID: 29414455 DOI: 10.1016/j.rmed.2018.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Aspirin-exacerbated respiratory disease is a chronic and treatment-resistant disease, characterized by the presence of eosinophilic rhinosinusitis, nasal polyposis, bronchial asthma, and nonsteroidal anti-inflammatory drugs hypersensitivity. Alterations in arachidonic acid metabolism may induce an imbalance between pro-inflammatory and anti-inflammatory substances, expressed as an overproduction of cysteinyl leukotrienes and an underproduction of prostaglandin E2. Although eosinophils play a key role, recent studies have shown the importance of other cells and molecules in the development of the disease like mast cells, basophils, lymphocytes, platelets, neutrophils, macrophages, epithelial respiratory cells, IL-33 and thymic stromal lymphopoietin, making each of them promissory diagnostic and treatment targets. In this review, we summarize the most important clinical aspects of the disease, including the current topics about diagnosis and treatment, like provocation challenges and aspirin desensitization. We also discuss recent findings in the pathogenesis of the disease, as well as future trends in diagnosis and treatment, including monoclonal antibodies and a low salicylate diet as a treatment option.
Collapse
Affiliation(s)
| | | | - Luis Manuel Terán
- Department of Immunogenetics, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Eduardo Guaní-Guerra
- Department of Medicine, University of Guanajuato, León, Guanajuato, Mexico; Department of Immunology, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, Mexico.
| |
Collapse
|
22
|
Parker AR, Ayars AG, Altman MC, Henderson WR. Lipid Mediators in Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2017; 36:749-763. [PMID: 27712768 DOI: 10.1016/j.iac.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a syndrome of severe asthma and rhinosinusitis with nasal polyposis with exacerbations of baseline eosinophil-driven and mast cell-driven inflammation after nonsteroidal antiinflammatory drug ingestion. Although the underlying pathophysiology is poorly understood, dysregulation of the cyclooxygenase and 5-lipoxygenase pathways of arachidonic acid metabolism is thought to be key. Central features of AERD pathogenesis are overproduction of proinflammatory and bronchoconstrictor cysteinyl leukotrienes and prostaglandin (PG) D2 and inhibition of bronchoprotective and antiinflammatory PGE2. Imbalance in the ratio of these lipid mediators likely leads to the increased eosinophilic and mast cell inflammatory responses in the respiratory tract.
Collapse
Affiliation(s)
- Andrew R Parker
- Department of Medicine, UW Medicine, University of Washington, 750 Republican Street, Seattle, WA 98109-4766, USA
| | - Andrew G Ayars
- Department of Medicine, UW Medicine, University of Washington, 750 Republican Street, Seattle, WA 98109-4766, USA
| | - Matthew C Altman
- Department of Medicine, UW Medicine, University of Washington, 750 Republican Street, Seattle, WA 98109-4766, USA
| | - William R Henderson
- Department of Medicine, UW Medicine, University of Washington, 750 Republican Street, Seattle, WA 98109-4766, USA.
| |
Collapse
|
23
|
Potential Biomarkers for NSAID-Exacerbated Respiratory Disease. Mediators Inflamm 2017; 2017:8160148. [PMID: 28852271 PMCID: PMC5568600 DOI: 10.1155/2017/8160148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Asthma is a common chronic disease with several variant phenotypes and endotypes. NSAID-exacerbated respiratory disease (NERD) is one such endotype characterized by asthma, chronic rhinosinusitis (CRS) with nasal polyps, and hypersensitivity to aspirin/cyclooxygenase-1 inhibitors. NERD is more associated with severe asthma than other asthma phenotypes. Regarding diagnosis, aspirin challenge tests via the oral or bronchial route are a standard diagnostic method; reliable in vitro diagnostic tests are not available. Recent studies have reported various biomarkers of phenotype, diagnosis, and prognosis. In this review, we summarized the known potential biomarkers of NERD that are distinct from those of aspirin-tolerant asthma. We also provided an overview of the different NERD subgroups.
Collapse
|
24
|
Mastalerz L, Celejewska-Wójcik N, Wójcik K, Gielicz A, Ćmiel A, Ignacak M, Oleś K, Szczeklik A, Sanak M. Induced sputum supernatant bioactive lipid mediators can identify subtypes of asthma. Clin Exp Allergy 2016; 45:1779-89. [PMID: 26449970 DOI: 10.1111/cea.12654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Induced sputum (IS) allows to measure mediators of asthmatic inflammation in bronchial secretions. The specific role of induced sputum supernatant (ISS) endogenous bioactive lipid mediators in subtypes of asthma is not well understood. OBJECTIVE To investigate the interactions between airway inflammation and clinical phenotypes of asthma, we integrated induced sputum supernatant (ISS) eicosanoids and quantitative assessment of infiltrating cells into new subtypes with the means of latent class analysis (LCA). METHODS One hundred and thirty-nine asthmatics with and without aspirin hypersensitivity underwent sputum induction. High-performance liquid chromatography or gas chromatography coupled with mass spectrometry was used to profile eicosanoids. Nineteen variables covering clinical characteristics, IS inflammatory cells and eicosanoids were considered in the LCA. RESULTS Four phenotypic asthma classes were distinguished. Class 1 with mild-to-moderate asthma, chronic rhinosinusitis (CRS), high PGA2 in ISS and almost equal distribution of inflammation cell patterns. Class 3 subjects also had mild-to-moderate asthma but without upper airway symptoms. Induced sputum was often paucigranulocytic with low levels of lipid mediators. Classes 2 and 4 represented severe asthma with CRS and impaired lung function despite high doses of steroids. High blood and sputum eosinophilia was in line with high cysteinyl leukotrienes and PGD2 in ISS only in class 2. Class 4 subjects tended to have increased sputum neutrophilia and PGE2 in ISS. Aspirin hypersensitivity was most frequent among class 2 subjects. CONCLUSIONS & CLINICAL RELEVANCE The LCA revealed four distinct asthma classes differing in eicosanoid pathways.
Collapse
Affiliation(s)
- L Mastalerz
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - N Celejewska-Wójcik
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - K Wójcik
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - A Gielicz
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - A Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Cracow, Poland
| | - M Ignacak
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - K Oleś
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - A Szczeklik
- Department of Applied Mathematics, AGH University of Science and Technology, Cracow, Poland
| | - M Sanak
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
25
|
Sanak M. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:481-90. [PMID: 27582398 PMCID: PMC5011047 DOI: 10.4168/aair.2016.8.6.481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C4 by platelets that adhere to granulocytes releasing leukotriene A4. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E2 or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E2 is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation.
Collapse
Affiliation(s)
- Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
26
|
Feng X, Ramsden MK, Negri J, Baker MG, Payne SC, Borish L, Steinke JW. Eosinophil production of prostaglandin D 2 in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2016; 138:1089-1097.e3. [PMID: 27423494 DOI: 10.1016/j.jaci.2016.04.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/21/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) differs from aspirin-tolerant disease in part because of eosinophilic tissue infiltration and overexpression of arachidonic acid metabolic pathway components that lead to enhanced secretion of cysteinyl leukotrienes and prostaglandin (PG) D2 observed constitutively and paradoxically in response to aspirin and other COX inhibitors. We have previously demonstrated the capacity of IFN-γ to drive cysteinyl leukotriene expression and response. OBJECTIVE We investigated eosinophils as a source of PGD2 production in patients with AERD. METHODS Eosinophils were enriched from tissue and peripheral blood obtained from control subjects, patients with aspirin-tolerant disease, and patients with AERD. mRNA was extracted and evaluated for expression of hematopoietic prostaglandin D synthase (hPGDS). Expression of hPGDS protein was confirmed with Western hybridization and immunofluorescence staining. Cells were stimulated with aspirin, and secretion of PGD2 was quantified. CD34+ progenitor cells were isolated and matured into eosinophils in the presence or absence of IFN-γ and hPGDS mRNA, and PGD2 release was measured. RESULTS Gene expression analysis revealed that eosinophils from tissue and blood of patients with AERD display increased levels of hPGDS compared with asthmatic and control samples. Western hybridization confirmed the increase in hPGDS mRNA translated to increased protein expression. Immunofluorescence confirmed mast cells and eosinophils from tissue of patients with AERD and asthma demonstrated hPGDS expression, with higher levels in eosinophils from patients with AERD. Incubation of eosinophils from blood and tissue with aspirin stimulated PGD2 release. IFN-γ-matured eosinophil progenitors showed enhanced hPGDS expression and increased levels of PGD2 release at baseline and after aspirin stimulation. CONCLUSIONS In addition to mast cells, eosinophils represent an important source of PGD2 in patients with AERD and identify a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Xin Feng
- Department of Otolaryngology, QiLu Hospital of Shandong University, Jinan, China
| | - Madison K Ramsden
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Va
| | - Julie Negri
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Va
| | - Mary Grace Baker
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Va
| | - Spencer C Payne
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Va; Department of Medicine, University of Virginia Health System, Charlottesville, Va; Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Va
| | - Larry Borish
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Va; Carter Immunology Center, University of Virginia Health System, Charlottesville, Va; Department of Medicine, University of Virginia Health System, Charlottesville, Va; Department of Microbiology, University of Virginia Health System, Charlottesville, Va
| | - John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Va; Carter Immunology Center, University of Virginia Health System, Charlottesville, Va; Department of Medicine, University of Virginia Health System, Charlottesville, Va.
| |
Collapse
|
27
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
28
|
Stevens W, Buchheit K, Cahill KN. Aspirin-Exacerbated Diseases: Advances in Asthma with Nasal Polyposis, Urticaria, Angioedema, and Anaphylaxis. Curr Allergy Asthma Rep 2016; 15:69. [PMID: 26475526 DOI: 10.1007/s11882-015-0569-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspirin-exacerbated diseases are important examples of drug hypersensitivities and include aspirin-exacerbated respiratory disease (AERD), aspirin- or non-steroidal anti-inflammatory drug (NSAID)-induced urticaria/angioedema, and aspirin- or NSAID-induced anaphylaxis. While each disease subtype may be distinguished by unique clinical features, the underlying mechanisms that contribute to these phenotypes are not fully understood. However, the inhibition of the cyclooxygenase-1 enzyme is thought to play a significant role. Additionally, eosinophils, mast cells, and their products, prostaglandins and leukotrienes, have been identified in the pathogenesis of AERD. Current diagnostic and treatment strategies for aspirin-exacerbated diseases remain limited, and continued research focusing on each of the unique hypersensitivity reactions to aspirin is essential. This will not only advance the understanding of these disease processes, but also lead to the subsequent development of novel therapeutics that patients who suffer from aspirin-induced reactions desperately need.
Collapse
Affiliation(s)
- Whitney Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 211 East Ontario Street, Suite 1000, Chicago, IL, 60611, USA.
| | - Kathleen Buchheit
- Division of Rhematology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, 1 Jimmy Fund Way, Smith Building Room 638, Boston, MA, 02115, USA.
| | - Katherine N Cahill
- Division of Rhematology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, 1 Jimmy Fund Way, Smith Building Room 638, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Mastalerz L, Januszek R, Kaszuba M, Wójcik K, Celejewska-Wójcik N, Gielicz A, Plutecka H, Oleś K, Stręk P, Sanak M. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics. Prostaglandins Other Lipid Mediat 2015. [PMID: 26209241 DOI: 10.1016/j.prostaglandins.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). METHODS EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. RESULTS Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). CONCLUSION A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Rafał Januszek
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Marek Kaszuba
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Krzysztof Wójcik
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Natalia Celejewska-Wójcik
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Anna Gielicz
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Krzysztof Oleś
- Department of Otolaryngology, Jagiellonian University School of Medicine, Śniadeckich 2, 31-531 Kraków, Poland
| | - Paweł Stręk
- Department of Otolaryngology, Jagiellonian University School of Medicine, Śniadeckich 2, 31-531 Kraków, Poland
| | - Marek Sanak
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland.
| |
Collapse
|