1
|
Meyer S, Hüttig N, Zenk M, Jäckel U, Pöther D. Bioaerosols in swine confinement buildings: A metaproteomic view. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:684-697. [PMID: 37919246 PMCID: PMC10667663 DOI: 10.1111/1758-2229.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Swine confinement buildings represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, it is necessary to study the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters and analysed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The study reveals the presence of peptides from pigs, their feed and microorganisms. The proportion of fungal peptides detected is considered to be underrepresented compared to bacterial peptides. In addition, the metaproteomic workflow enabled functional predictions about the discovered peptides. Housekeeping proteins were found in particular, but also evidence for the presence of bacterial virulence factors (e.g., serralysin-like metalloprotease) as well as plant (e.g., chitinase) and fungal allergens (e.g., alt a10). Metaproteomic analyses can thus be used to identify factors that may be relevant to the health of pig farmers. Accordingly, such studies could be used in the future to assess the adverse health potential of an occupationally relevant bioaerosol and help consider defined protective strategies for workers.
Collapse
Affiliation(s)
- Susann Meyer
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Marianne Zenk
- Research Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | | |
Collapse
|
2
|
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Barre A, Damme EJV, Simplicien M, Benoist H, Rougé P. Are Dietary Lectins Relevant Allergens in Plant Food Allergy? Foods 2020; 9:foods9121724. [PMID: 33255208 PMCID: PMC7760050 DOI: 10.3390/foods9121724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/17/2023] Open
Abstract
Lectins or carbohydrate-binding proteins are widely distributed in seeds and vegetative parts of edible plant species. A few lectins from different fruits and vegetables have been identified as potential food allergens, including wheat agglutinin, hevein (Hev b 6.02) from the rubber tree and chitinases containing a hevein domain from different fruits and vegetables. However, other well-known lectins from legumes have been demonstrated to behave as potential food allergens taking into account their ability to specifically bind IgE from allergic patients, trigger the degranulation of sensitized basophils, and to elicit interleukin secretion in sensitized people. These allergens include members from the different families of higher plant lectins, including legume lectins, type II ribosome-inactivating proteins (RIP-II), wheat germ agglutinin (WGA), jacalin-related lectins, GNA (Galanthus nivalis agglutinin)-like lectins, and Nictaba-related lectins. Most of these potentially active lectin allergens belong to the group of seed storage proteins (legume lectins), pathogenesis-related protein family PR-3 comprising hevein and class I, II, IV, V, VI, and VII chitinases containing a hevein domain, and type II ribosome-inactivating proteins containing a ricin B-chain domain (RIP-II). In the present review, we present an exhaustive survey of both the structural organization and structural features responsible for the allergenic potency of lectins, with special reference to lectins from dietary plant species/tissues consumed in Western countries.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Els J.M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
4
|
Leng Y, Li Y, Wen Y, Zhao H, Wang Q, Li SW. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111098. [PMID: 32798749 DOI: 10.1016/j.ecoenv.2020.111098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a detrimental element that can be toxic to plants. The physiological and biochemical responses of plants to Cd stress have been extensively studied, but the molecular mechanisms remain unclear. The present study showed that Cd severely inhibited the growth of roots and shoots and reduced plant biomass of mung bean seedlings. To further investigate the gene profiles and molecular processes in response Cd stress, transcriptome analyses of mung bean roots exposed to 100 μM Cd for 1, 5, and 9 days were performed. Cd treatment significantly decreased global gene expression levels at 5 and 9 d compared with the control. A total of 6737, 10279, and 9672 differentially expressed genes (DEGs) were identified in the 1-, 5-, and 9-day Cd-treated root tissues compared with the controls, respectively. Based on the analysis of DEG function annotation and enrichment, a pattern of mung bean roots response to Cd stress was proposed. The processes detoxification and antioxidative defense were involved in the early response of mung bean roots to Cd. Cd stress downregulated the expressions of a series of genes involved in cell wall biosynthesis, cell division, DNA replication and repair, and photosynthesis, while genes involved in signal transduction and regulation, transporters, secondary metabolisms, defense systems, and mitochondrial processes were upregulated in response to Cd, which might be contributed to the improvement of plant tolerance. Our results provide some novel insights into the molecular processes for growth and adaption of mung bean roots in response to Cd and many candidate genes for further biotechnological manipulations to improve plant tolerance to heavy metals.
Collapse
Affiliation(s)
- Yan Leng
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yi Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ya Wen
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hui Zhao
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Qiang Wang
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Shi-Weng Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Niu L, Liu L, Wang W. Digging for Stress-Responsive Cell Wall Proteins for Developing Stress-Resistant Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:576385. [PMID: 33101346 PMCID: PMC7546335 DOI: 10.3389/fpls.2020.576385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 06/09/2023]
Abstract
As a vital component of plant cell walls, proteins play important roles in stress response by modifying the structure of cell walls and involving in the wall integrity signaling pathway. Recently, we have critically reviewed the predictors, databases, and cross-referencing of the subcellular locations of possible cell wall proteins (CWPs) in plants (Briefings in Bioinformatics 2018;19:1130-1140). Here, we briefly introduce strategies for isolating CWPs during proteomic analysis. Taking maize (Zea mays) as an example, we retrieved 1873 probable maize CWPs recorded in the UniProt KnowledgeBase (UniProtKB). After curation, 863 maize CWPs were identified and classified into 59 kinds of protein families. By referring to gene ontology (GO) annotations and gene differential expression in the Expression Atlas, we have highlighted the potential of CWPs acting in the front line of defense against biotic and abiotic stresses. Moreover, the analysis results of cis-acting elements revealed the responsiveness of the genes encoding CWPs toward phytohormones and various stresses. We suggest that the stress-responsive CWPs could be promising candidates for applications in developing varieties of stress-resistant maize.
Collapse
|
6
|
Chitinases as Food Allergens. Molecules 2019; 24:molecules24112087. [PMID: 31159327 PMCID: PMC6600546 DOI: 10.3390/molecules24112087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
Food allergies originate from adverse immune reactions to some food components. Ingestion of food allergens can cause effects of varying severity, from mild itching to severe anaphylaxis reactions. Currently there are no clues to predict the allergenic potency of a molecule, nor are cures for food allergies available. Cutting-edge research on allergens is aimed at increasing information on their diffusion and understanding structure-allergenicity relationships. In this context, purified recombinant allergens are valuable tools for advances in the diagnostic and immunotherapeutic fields. Chitinases are a group of allergens often found in plant fruits, but also identified in edible insects. They are classified into different families and classes for which structural analyses and identification of epitopes have been only partially carried out. Moreover, also their presence in common allergen databases is not complete. In this review we provide a summary of the identified food allergenic chitinases, their main structural characteristics, and a clear division in the different classes.
Collapse
|
7
|
Eigenmann PA, Akdis C, Bousquet J, Grattan CE, Hoffmann-Sommergruber K, Hellings PW, Agache I. Highlights and recent developments in food and drug allergy, and anaphylaxis in EAACI Journals (2017). Pediatr Allergy Immunol 2018; 29:801-807. [PMID: 30276869 DOI: 10.1111/pai.12986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
This review highlights research advances and important achievements in food allergy, anaphylaxis, and drug allergy that were published in the Journals of the European Academy of Allergy and Clinical Immunology (EAACI) in 2017. Food allergy and anaphylaxis research have continued to rapidly accelerate, with increasing numbers of outstanding developments in 2017. We saw new studies on the mechanisms, diagnosis, prevention of food allergy, and novel food allergens. Drug hypersensitivity, as well as hereditary angioedema, has been highlighted in the present review as the focus of recent developments. The EAACI owns three journals: Allergy, Pediatric Allergy and Immunology (PAI), and Clinical and Translational Allergy (CTA). One of the major goals of the EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. This paper summarizes the achievements of 2017 in anaphylaxis, and food and drug allergy.
Collapse
Affiliation(s)
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jean Bousquet
- MACVIA-France, Fondation Partenariale FMC VIA-LR, Montpellier, France.,INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France.,UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Euforea, Brussels, Belgium
| | - Clive E Grattan
- St John's Institute of Dermatology, Guy's Hospital, London, UK
| | | | - Peter W Hellings
- Euforea, Brussels, Belgium.,Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
8
|
Satitsuksanoa P, Jansen K, Głobińska A, van de Veen W, Akdis M. Regulatory Immune Mechanisms in Tolerance to Food Allergy. Front Immunol 2018; 9:2939. [PMID: 30619299 PMCID: PMC6299021 DOI: 10.3389/fimmu.2018.02939] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Oral tolerance can develop after frequent exposure to food allergens. Upon ingestion, food is digested into small protein fragments in the gastrointestinal tract. Small food particles are later absorbed into the human body. Interestingly, some of these ingested food proteins can cause allergic immune responses, which can lead to food allergy. So far it has not been completely elucidated how these proteins become immunogenic and cause food allergies. In contrast, oral tolerance helps to prevent the pathologic reactions against different types of food antigens from animal or plant origin. Tolerance to food is mainly acquired by dendritic cells, epithelial cells in the gut, and the gut microbiome. A subset of CD103+ DCs is capable of inducing T regulatory cells (Treg cells) that express anti-inflammatory cytokines. Anergic T cells also contribute to oral tolerance, by reducing the number of effector cells. Similar to Treg cells, B regulatory cells (Breg cells) suppress effector T cells and contribute to the immune tolerance to food allergens. Furthermore, the human microbiome is an essential mediator in the induction of oral tolerance or food allergy. In this review, we outline the current understanding of regulatory immune mechanisms in oral tolerance. The biological changes reflecting early consequences of immune stimulation with food allergens should provide useful information for the development of novel therapeutic treatments.
Collapse
|