1
|
Petta I, Thorp M, Ciers M, Blancke G, Boon L, Meese T, Van Nieuwerburgh F, Wullaert A, Grencis R, Elewaut D, van Loo G, Vereecke L. Myeloid A20 is critical for alternative macrophage polarization and type-2 immune-mediated helminth resistance. Front Immunol 2024; 15:1373745. [PMID: 38680500 PMCID: PMC11045979 DOI: 10.3389/fimmu.2024.1373745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Background Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.
Collapse
Affiliation(s)
- Ioanna Petta
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Marie Thorp
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Maarten Ciers
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Gillian Blancke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | | | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Richard Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Dirk Elewaut
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lars Vereecke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
2
|
van der Ploeg EK, Krabbendam L, Vroman H, van Nimwegen M, de Bruijn MJW, de Boer GM, Bergen IM, Kool M, Tramper-Standers GA, Braunstahl GJ, Huylebroeck D, Hendriks RW, Stadhouders R. Type-2 CD8 + T-cell formation relies on interleukin-33 and is linked to asthma exacerbations. Nat Commun 2023; 14:5137. [PMID: 37612281 PMCID: PMC10447424 DOI: 10.1038/s41467-023-40820-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
CD4+ T helper 2 (Th2) cells and group 2 innate lymphoid cells are considered the main producers of type-2 cytokines that fuel chronic airway inflammation in allergic asthma. However, CD8+ cytotoxic T (Tc) cells - critical for anti-viral defense - can also produce type-2 cytokines (referred to as 'Tc2' cells). The role of Tc cells in asthma and virus-induced disease exacerbations remains poorly understood, including which micro-environmental signals and cell types promote Tc2 cell formation. Here we show increased circulating Tc2 cell abundance in severe asthma patients, reaching peak levels during exacerbations and likely emerging from canonical IFNγ+ Tc cells through plasticity. Tc2 cell abundance is associated with increased disease burden, higher exacerbations rates and steroid insensitivity. Mouse models of asthma recapitulate the human disease by showing extensive type-2 skewing of lung Tc cells, which is controlled by conventional type-1 dendritic cells and IFNγ. Importantly, we demonstrate that the alarmin interleukin-33 (IL-33) critically promotes type-2 cytokine production by lung Tc cells in experimental allergic airway inflammation. Our data identify Tc cells as major producers of type-2 cytokines in severe asthma and during exacerbations that are remarkably sensitive to alterations in their inflammatory tissue micro-environment, with IL-33 emerging as an important regulator of Tc2 formation.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lisette Krabbendam
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Geertje M de Boer
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | - Ingrid M Bergen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gerdien A Tramper-Standers
- Department of Pediatric Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
- Department of Neonatology, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Holgado A, Liu Z, Aidarova A, Mueller C, Haegman M, Driege Y, Kreike M, Scott CL, Afonina IS, Beyaert R. A20 is a master switch of IL-33 signaling in macrophages and determines IL-33-induced lung immunity. J Allergy Clin Immunol 2023; 152:244-256.e4. [PMID: 36898482 DOI: 10.1016/j.jaci.2023.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND IL-33 plays a major role in the pathogenesis of allergic diseases such as asthma and atopic dermatitis. On its release from lung epithelial cells, IL-33 primarily drives type 2 immune responses, accompanied by eosinophilia and robust production of IL-4, IL-5, and IL-13. However, several studies show that IL-33 can also drive a type 1 immune response. OBJECTIVE We sought to determine the role of A20 in the regulation of IL-33 signaling in macrophages and IL-33-induced lung immunity. METHODS We studied the immunologic response in lungs of IL-33-treated mice that specifically lack A20 in myeloid cells. We also analyzed IL-33 signaling in A20-deficient bone marrow-derived macrophages. RESULTS IL-33-induced lung innate lymphoid cell type 2 expansion, type 2 cytokine production, and eosinophilia were drastically reduced in the absence of macrophage A20 expression, whereas neutrophils and interstitial macrophages in lungs were increased. In vitro, IL-33-mediated nuclear factor kappa B activation was only weakly affected in A20-deficient macrophages. However, in the absence of A20, IL-33 gained the ability to activate signal transducer and activator of transcription 1 (STAT1) signaling and STAT1-dependent gene expression. Surprisingly, A20-deficient macrophages produced IFN-γ in response to IL-33, which was fully STAT1-dependent. Furthermore, STAT1 deficiency partially restored the ability of IL-33 to induce ILC2 expansion and eosinophilia in myeloid cell-specific A20 knockout mice. CONCLUSIONS We reveal a novel role for A20 as a negative regulator of IL-33-induced STAT1 signaling and IFN-γ production in macrophages, which determines lung immune responses.
Collapse
Affiliation(s)
- Aurora Holgado
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zhuangzhuang Liu
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Aigerim Aidarova
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christina Mueller
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Liu Y, Xu K, Yao Y, Liu Z. Current research into A20 mediation of allergic respiratory diseases and its potential usefulness as a therapeutic target. Front Immunol 2023; 14:1166928. [PMID: 37056760 PMCID: PMC10086152 DOI: 10.3389/fimmu.2023.1166928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Allergic airway diseases are characterized by excessive and prolonged type 2 immune responses to inhaled allergens. Nuclear factor κB (NF-κB) is a master regulator of the immune and inflammatory response, which has been implicated to play a prominent role in the pathogenesis of allergic airway diseases. The potent anti-inflammatory protein A20, termed tumor necrosis factor-α-inducible protein 3 (TNFAIP3), exerts its effects by inhibiting NF-κB signaling. The ubiquitin editing abilities of A20 have attracted much attention, resulting in its identification as a susceptibility gene in various autoimmune and inflammatory disorders. According to the results of genome-wide association studies, several TNFAIP3 gene locus nucleotide polymorphisms have been correlated to allergic airway diseases. In addition, A20 has been found to play a pivotal role in immune regulation in childhood asthma, particularly in the protection against environmentally mediated allergic diseases. The protective effects of A20 against allergy were observed in conditional A20-knockout mice in which A20 was depleted in the lung epithelial cells, dendritic cells, or mast cells. Furthermore, A20 administration significantly decreased inflammatory responses in mouse models of allergic airway diseases. Here, we review emerging findings elucidating the cellular and molecular mechanisms by which A20 regulates inflammatory signaling in allergic airway diseases, as well as discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yan Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Yin Yao, ; Kai Xu,
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Yin Yao, ; Kai Xu,
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Yin Yao, ; Kai Xu,
| |
Collapse
|
5
|
Decreased ubiquitin modifying enzyme A20 associated with hyper-responsiveness to ovalbumin challenge following intrauterine growth restriction. Respir Res 2023; 24:50. [PMID: 36788604 PMCID: PMC9926749 DOI: 10.1186/s12931-023-02360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is strongly correlated with an increased risk of asthma later in life. Farm dust protects mice from developing house dust mite-induced asthma, and loss of ubiquitin modifying enzyme A20 in lung epithelium would abolish this protective effect. However, the mechanisms of A20 in the development of asthma following IUGR remains unknown. METHODS An IUGR rat model induced by maternal nutrient restriction was used for investigating the role of A20 in the response characteristics of IUGR rats to ovalbumin (OVA) challenge. The ubiquitination of proteins and N6-methyladenosine (m6A) modifications were used to further assess the potential mechanism of A20. RESULTS IUGR can reduce the expression of A20 protein in lung tissue of newborn rats and continue until 10 weeks after birth. OVA challenging can increase the expression of A20 protein in lung tissue of IUGR rats, but its level was still significantly lower than the control OVA group. The differentially ubiquitinated proteins in lung tissues were also observed in IUGR and normal newborn rats. Furthermore, this ubiquitination phenomenon continued from the newborn to adulthood. In the detected RNA methylations, m6A abundance of the motif GGACA was the highest. The higher abundances of m6A modification of A20 mRNA from IUGR were negatively correlated with the trend of A20 protein levels. CONCLUSION These findings indicate A20 as a key regulator during the development of asthma following IUGR, providing further insight into the prevention of asthma induced by environmental factors.
Collapse
|
6
|
A20 (Tnfaip3) expressed in CD4 + T cells suppresses Th2 cell-mediated allergic airway inflammation in mice. Biochem Biophys Res Commun 2022; 629:47-53. [PMID: 36099784 DOI: 10.1016/j.bbrc.2022.08.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
A20 (Tnfaip3), a ubiquitin-editing enzyme, inhibits NF-κB signaling pathways in response to pro-inflammatory cytokines. Previous studies have proved the anti-inflammatory roles of A20 in various cell types, including T cells, B cells, dendritic cells, and intestinal epithelial cells. Moreover, recent studies have shown that A20 expressed in lung epithelial cells is required for LPS-induced protection from asthma. In humans, a single-nucleotide polymorphism in TNFAIP3 is associated with asthma risk. However, the role of A20 expressed in T cells in asthmatic responses has not been elucidated. We addressed this point by generating mice lacking A20 expression in T cells (CD4-CreA20 fl/fl mice). We found that house dust mite (HDM)-induced allergic airway inflammation, mucus production, airway hyperresponsiveness, and Th2 cytokine production were significantly exacerbated in CD4-CreA20 fl/fl mice compared with those in control A20 fl/fl mice. In vitro differentiation of Th2 cells but not of Th1 cells or Th17 cells was enhanced in CD4+ T cells by the absence of A20. Consistently, enforced expression of A20 inhibited the differentiation of Th2 cells but not of Th1 cells or Th17 cells. Notably, the expression of GATA3 was significantly enhanced in A20-deficient CD4+ T cells, and the enhanced GATA3 expression was partly canceled by IL-2 neutralization. These results suggest that A20 functions as a stabilizing factor maintaining GATA3 levels during the induction of Th2 cells to prevent excessive Th2 cell differentiation.
Collapse
|
7
|
Xuan S, Li Y, Wu Y, Adcock IM, Zeng X, Yao X. Langerin-expressing dendritic cells in pulmonary immune-related diseases. Front Med (Lausanne) 2022; 9:909057. [PMID: 36160158 PMCID: PMC9490018 DOI: 10.3389/fmed.2022.909057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen presentation. They serve as an important bridge connecting innate and adaptive immunity, and express various receptors for antigen capture. DCs are divided into various subclasses according to their differential expression of cell surface receptors and different subclasses of DCs exhibit specific immunological characteristics. Exploring the common features of each sub-category has became the focus of many studies. There are certain amounts of DCs expressing langerin in airways and peripheral lungs while the precise mechanism by which langerin+ DCs drive pulmonary disease is unclear. Langerin-expressing DCs can be further subdivided into numerous subtypes based on the co-expressed receptors, but here, we identify commonalities across these subtypes that point to the major role of langerin. Better understanding is required to clarify key disease pathways and determine potential new therapeutic approaches.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Yao
| |
Collapse
|
8
|
Nuñez R, Rodriguez MJ, Palomares F, Gomez F, Jabato FM, Cordoba-Caballero J, Seoane P, Losada J, Rojo J, Torres MJ, Perkins JR, Mayorga C. Transcriptional changes in dendritic cells underlying allergen specific induced tolerance in a mouse model. Sci Rep 2022; 12:2797. [PMID: 35181694 PMCID: PMC8857182 DOI: 10.1038/s41598-022-06186-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate food allergy-tolerance mechanisms induced through allergen-specific immunotherapy we used RNA-Sequencing to measure gene expression in lymph-node-derived dendritic cells from Pru p 3-anaphylactic mice after immunotherapy with glycodendropeptides at 2 nM and 5 nM, leading to permanent tolerance and short-term desensitization, respectively. Gene expression was also measured in mice receiving no immunotherapy (anaphylaxis); and in which anaphylaxis could never occur (antigen-only). Compared to anaphylaxis, the antigen-only group showed the greatest number of expression-changes (411), followed by tolerant (186) and desensitized (119). Only 29 genes changed in all groups, including Il12b, Cebpb and Ifngr1. The desensitized group showed enrichment for genes related to chronic inflammatory response, secretory granule, and regulation of interleukin-12 production; the tolerant group showed genes related to cytokine receptor activity and glucocorticoid receptor binding, suggesting distinct pathways for similar outcomes. We identified genes and processes potentially involved in the restoration of long-term tolerance via allergen-specific immunotherapy, representing potential prognostic biomarkers.
Collapse
Affiliation(s)
- Rafael Nuñez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Maria Jose Rodriguez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Gomez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando M Jabato
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Losada
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Maria Jose Torres
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - James Richard Perkins
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain.
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain.
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.
| |
Collapse
|
9
|
Agache I, Eguiluz‐Gracia I, Cojanu C, Laculiceanu A, Giacco S, Zemelka‐Wiacek M, Kosowska A, Akdis CA, Jutel M. Advances and highlights in asthma in 2021. Allergy 2021; 76:3390-3407. [PMID: 34392546 DOI: 10.1111/all.15054] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
Last year brought a significant advance in asthma management, unyielding to the pressure of the pandemics. Novel key findings in asthma pathogenesis focus on the resident cell compartment, epigenetics and the innate immune system. The precision immunology unbiased approach was supplemented with novel tools and greatly facilitated by the use of artificial intelligence. Several randomised clinical trials and good quality real-world evidence shed new light on asthma treatment and supported the revision of several asthma guidelines (GINA, Expert Panel Report 3, ERS/ATS guidelines on severe asthma) and the conception of new ones (EAACI Guidelines for the use of biologicals in severe asthma). Integrating asthma management within the broader context of Planetary Health has been put forward. In this review, recently published articles and clinical trials are summarised and discussed with the goal to provide clinicians and researchers with a concise update on asthma research from a translational perspective.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Ibon Eguiluz‐Gracia
- Allergy Unit IBIMA‐Regional University Hospital of MalagaUMA, RETICS ARADyALBIONAND Malaga Spain
| | | | | | - Stefano Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | | | - Anna Kosowska
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wroclaw Poland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wroclaw Poland
| |
Collapse
|
10
|
Vroman H, Uden D, Bergen IM, Hulst JAC, Lukkes M, Loo G, Clausen BE, Boon L, Lambrecht BN, Hammad H, Hendriks RW, Kool M. Tnfaip3 expression in pulmonary conventional type 1 Langerin-expressing dendritic cells regulates T helper 2-mediated airway inflammation in mice. Allergy 2020; 75:2587-2598. [PMID: 32329078 PMCID: PMC7687104 DOI: 10.1111/all.14334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Background Conventional type 1 dendritic cells (cDC1s) control anti‐viral and anti‐tumor immunity by inducing antigen‐specific cytotoxic CD8+ T‐cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF‐κB, might determine the precise outcome of Th‐cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2‐driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF‐κB signaling. Methods To target pulmonary cDC1s, Cd207 (Langerin)‐mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/flxCd207+/cre (Tnfaip3Lg‐KO) mice. Mice were exposed to house dust mite (HDM) to provoke Th2‐mediated immune responses. Results Mice harboring Tnfaip3‐deficient cDC1s did not develop Th2‐driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ‐expressing CD8+ T cells. In addition, Tnfaip3Lg‐KO mice harbored increased numbers of IL‐12–expressing cDC1s and elevated PD‐L1 expression in all pulmonary DC subsets. Blocking either IL‐12 or IFNγ in Tnfaip3Lg‐KO mice restored Th2 responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2 development. Conclusions These findings indicate that the activation status of cDC1s, shown by their specific expression of co‐inhibitory molecules and cytokines, critically contributes to the development of Th2 cell–mediated disorders, most likely by influencing IFNγ production in CD8+ T cells.
Collapse
Affiliation(s)
- Heleen Vroman
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
- VIB Center for Inflammation Research Ghent Belgium
| | - Denise Uden
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
| | - Ingrid M. Bergen
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
| | | | - Melanie Lukkes
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
| | - Geert Loo
- VIB Center for Inflammation Research Ghent Belgium
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Björn E. Clausen
- Institute for Molecular Medicine University Medical Center of the Johannes Gutenberg‐University Mainz Mainz Germany
| | | | - Bart N. Lambrecht
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
- VIB Center for Inflammation Research Ghent Belgium
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research Ghent Belgium
- Department of Internal Medicine Ghent University Ghent Belgium
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine Erasmus MC Rotterdam The Netherlands
| |
Collapse
|