1
|
Cazzaniga S, Simon D. Decoding atopic dermatitis: unveiling phenotypes through data-driven methods. Br J Dermatol 2024; 190:146-147. [PMID: 37976182 DOI: 10.1093/bjd/ljad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Simone Cazzaniga
- Department of Dermatology, Inselspital University Hospital of Bern, Bern , Switzerland
- Centro Studi GISED, Bergamo , Italy
| | - Dagmar Simon
- Department of Dermatology, Inselspital University Hospital of Bern, Bern , Switzerland
| |
Collapse
|
2
|
Nicolàs LSDS, Czarnowicki T, Akdis M, Pujol RM, Lozano-Ojalvo D, Leung DYM, Guttman-Yassky E, Santamaria-Babí LF. CLA+ memory T cells in atopic dermatitis. Allergy 2024; 79:15-25. [PMID: 37439317 DOI: 10.1111/all.15816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Circulating skin-homing cutaneous lymphocyte-associated antigen (CLA)+ T cells constitute a small subset of human memory T cells involved in several aspects of atopic dermatitis: Staphylococcus aureus related mechanisms, the abnormal Th2 immune response, biomarkers, clinical aspects of the patients, pruritus, and the mechanism of action of targeted therapies. Superantigens, IL-13, IL-31, pruritus, CCL17 and early effects on dupilumab-treated patients have in common that they are associated with the CLA+ T cell mechanisms in atopic dermatitis patients. The function of CLA+ T cells corresponds with the role of T cells belonging to the skin-associated lymphoid tissue and could be a reason why they reflect different mechanisms of atopic dermatitis and many other T cell mediated skin diseases. The goal of this review is to gather all this translational information of atopic dermatitis pathology.
Collapse
Affiliation(s)
- Lídia Sans-de San Nicolàs
- Immunologia Translacional, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Tali Czarnowicki
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos-Wolfgang, Switzerland
| | - Ramon M Pujol
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luis F Santamaria-Babí
- Immunologia Translacional, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| |
Collapse
|
3
|
Vaher H, Kingo K, Kolberg P, Pook M, Raam L, Laanesoo A, Remm A, Tenson T, Alasoo K, Mrowietz U, Weidinger S, Kingo K, Rebane A. Skin Colonization with S. aureus Can Lead to Increased NLRP1 Inflammasome Activation in Patients with Atopic Dermatitis. J Invest Dermatol 2023; 143:1268-1278.e8. [PMID: 36736455 DOI: 10.1016/j.jid.2023.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
The role of NLRP1 inflammasome activation and subsequent production of IL-1 family cytokines in the development of atopic dermatitis (AD) is not clearly understood. Staphylococcus aureus is known to be associated with increased mRNA levels of IL1 family cytokines in the skin and more severe AD. In this study, the altered expression of IL-1 family cytokines and inflammasome-related genes was confirmed, and a positive relationship between mRNA levels of inflammasome sensor NLRP1 and IL1B or IL18 was determined. Enhanced expression of the NLRP1 and PYCARD proteins and increased caspase-1 activity were detected in the skin of patients with AD. The genetic association of IL18R1 and IL18RAP with AD was confirmed, and the involvement of various immune cell types was predicted using published GWAS and expression quantitative trait loci datasets. In keratinocytes, the inoculation with S. aureus led to the increased secretion of IL-1β and IL-18, whereas small interfering RNA silencing of NLRP1 inhibited the production of these cytokines. Our results suggest that skin colonization with S. aureus may cause the activation of the NLRP1 inflammasome in keratinocytes, which leads to the secretion of IL-1β and IL-18 and thereby may contribute to the pathogenesis of AD, particularly in the presence of genetic variations in the IL-18 pathway.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Kingo
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia; Department of Dermatology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Anet Laanesoo
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anu Remm
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia; Department of Dermatology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Schuler CF, Billi AC, Maverakis E, Tsoi LC, Gudjonsson JE. Novel insights into atopic dermatitis. J Allergy Clin Immunol 2023; 151:1145-1154. [PMID: 36428114 PMCID: PMC10164702 DOI: 10.1016/j.jaci.2022.10.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
Recent research into the pathophysiology and treatment of atopic dermatitis (AD) has shown notable progress. An increasing number of aspects of the immune system are being implicated in AD, including the epithelial barrier, TH2 cytokines, and mast cells. Major advances in therapeutics were made in biologic cytokine and receptor antagonists and among Janus kinase inhibitors. We focus on these areas and address new insights into AD epidemiology, biomarkers, endotypes, prevention, and comorbidities. Going forward, we expect future mechanistic insights and therapeutic advances to broaden physicians' ability to diagnose and manage AD patients, and perhaps to find a cure for this chronic condition.
Collapse
Affiliation(s)
- Charles F Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Emanual Maverakis
- Department of Dermatology, University of California-Davis, Sacramento, Calif
| | - Lam C Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Johann E Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
5
|
Hu T, Todberg T, Ewald DA, Hoof I, Correa da Rosa J, Skov L, Litman T. Assessment of Spatial and Temporal Variation in the Skin Transcriptome of Atopic Dermatitis by Use of 1.5 mm Minipunch Biopsies. J Invest Dermatol 2023; 143:612-620.e6. [PMID: 36496193 DOI: 10.1016/j.jid.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder characterized by a heterogeneous and fluctuating disease course. To obtain a detailed molecular understanding of both the temporal and spatial variation in AD, we conducted a longitudinal case-control study, in which we followed a population, the GENAD (Gentofte AD) cohort, of mild-to-moderate patients with AD and matched healthy controls for more than a year. By the use of 1.5 mm minipunch biopsies, we obtained 393 samples from lesional, nonlesional, and healthy skin from multiple anatomical regions at different time points for transcriptomic profiling. We observed that the skin transcriptome was remarkably stable over time, with the largest variation being because of disease, individual, and skin site. Numerous AD-specific, differentially expressed genes were identified and indicated a disrupted skin barrier and activated immune response as the main features of AD. We also identified potentially novel targets in AD, including IL-37, MAML1, and several long noncoding RNAs. We envisage that the application of small biopsies, such as those introduced in this study, combined with omics technologies, will enable future skin research, in which multiple sampling from the same individual will give a more detailed, dynamic picture of how a disease fluctuates in time and space.
Collapse
Affiliation(s)
- Tu Hu
- Explorative Biology and Bioinformatics, LEO Pharma, Ballerup, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Todberg
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Ilka Hoof
- Explorative Biology and Bioinformatics, LEO Pharma, Ballerup, Denmark
| | - Joel Correa da Rosa
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Explorative Biology and Bioinformatics, LEO Pharma, Ballerup, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Deng J, Schieler C, Borghans JAM, Lu C, Pandit A. Finding Gene Regulatory Networks in Psoriasis: Application of a Tree-Based Machine Learning Approach. Front Immunol 2022; 13:921408. [PMID: 35874668 PMCID: PMC9301015 DOI: 10.3389/fimmu.2022.921408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder. Although it has been studied extensively, the molecular mechanisms driving the disease remain unclear. In this study, we utilized a tree-based machine learning approach to explore the gene regulatory networks underlying psoriasis. We then validated the regulators and their networks in an independent cohort. We identified some key regulators of psoriasis, which are candidates to serve as potential drug targets and disease severity biomarkers. According to the gene regulatory network that we identified, we suggest that interferon signaling represents a key pathway of psoriatic inflammation.
Collapse
Affiliation(s)
- Jingwen Deng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Carlotta Schieler
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chuanjian Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chuanjian Lu, ; Aridaman Pandit,
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Chuanjian Lu, ; Aridaman Pandit,
| |
Collapse
|
7
|
Blood transcriptome profiling identifies 2 candidate endotypes of atopic dermatitis. J Allergy Clin Immunol 2022; 150:385-395. [PMID: 35182548 DOI: 10.1016/j.jaci.2022.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Few studies have analyzed the blood transcriptome in atopic dermatitis (AD). OBJECTIVE We explored blood transcriptomic features of moderate to severe AD. METHODS Blood messenger RNA sequencing on 60 adults from the TREATgermany registry including 49 patients before and after dupilumab treatment, as well as from an independent cohort of 31 patients and 43 controls was performed. Patient clustering, differential expression, correlation and coexpression network analysis, and unsupervised learning were conducted. RESULTS AD patients showed pronounced inflammatory expression signatures with increased myeloid and IL-5-related patterns, and clearly segregated into 2 distinct clusters, with striking differences in particular for transcripts involved in eosinophil signaling. The eosinophil-high endotype showed a more pronounced global dysregulation, a positive correlation between disease activity and signatures related to IL-5 signaling, and strong correlations with several target proteins of antibodies or small molecules under development for AD. In contrast, the eosinophil-low endotype showed little transcriptomic dysregulation and no association between disease activity and gene expression. Clinical improvement with receipt of dupilumab was accompanied by a decrease of innate immune responses and an increase of lymphocyte signatures including B-cell activation and natural killer cell composition and/or function. The proportion of super responders was higher in the eosinophil-low endotype (32% vs 11%). Continued downregulation of IL18RAP, IFNG, and granzyme A in the eosinophil-high endotype suggests a residual disturbance of natural killer cell function despite clinical improvement. CONCLUSION AD can be stratified into eosinophilic and noneosinophilic endotypes; such stratification may be useful when assessing stratified trial designs and treatment strategies.
Collapse
|