1
|
Castells M, Madden M, Oskeritzian CA. Mast Cells and Mas-related G Protein-coupled Receptor X2: Itching for Novel Pathophysiological Insights to Clinical Relevance. Curr Allergy Asthma Rep 2024; 25:5. [PMID: 39585499 PMCID: PMC11588779 DOI: 10.1007/s11882-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Clinical interest in non-IgE activation of mast cells has been growing since the description of the human MRGPRX2 receptor. Its participation in many allergic and inflammatory conditions such as non histaminergic itch, urticaria, asthma and drug hypersensitivity has been growing. We present here an updated review of its structure, expression and biology to help understand conditions and diseases attributed to its activation and/or overpexression and the search for agonists and antagonists of clinical utility. RECENT FINDINGS The description of patients presenting anaphylaxis when exposed to one or multiple MRGPRX2 agonists such as general anesthetics, antibiotics, opiods and other agents has provided evidence of potential heterogeneity in humans. This review provides the most recent developments into the receptor structure, tissue expression and signaling pathways including the potential enhancement of IgE-mediated mast cell activation. New insight into its agonists and antagonists is described and future developments to adress its modulations.
Collapse
Affiliation(s)
- Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Smith Building, Room 626D, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| | - Michael Madden
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
2
|
Lang DM, Sheikh J, Joshi S, Bernstein JA. Endotypes, phenotypes, and biomarkers in chronic spontaneous urticaria: Evolving toward personalized medicine. Ann Allergy Asthma Immunol 2024:S1081-1206(24)01633-8. [PMID: 39490777 DOI: 10.1016/j.anai.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Chronic spontaneous urticaria (CSU) is an inflammatory disorder that manifests with hives, angioedema, or both and lasts more than or equal to 6 weeks. Although certain elements of CSU pathogenesis are well defined, others remain unclear. We discuss our current understanding of the underlying CSU endotypes, distinct clinical phenotypes, and predictive biomarkers. It is increasingly recognized that CSU comprises a spectrum of different underlying pathogenic mechanisms and distinct clinical presentations. Broadly, 2 endotypes that drive CSU pathogenesis have been identified, namely type I (autoallergic) and type IIb (autoimmune). However, a subpopulation shows evidence of both types, and some patients show evidence of neither. Multiple identified biomarkers have been associated with these endotypes or with disease features, such as CSU severity and duration. There is a lack of connectivity among the identified biomarkers, genetic risk loci, phenotypes, and corresponding endotypes, and each of these is frequently considered independently of the others. These identifiable features also have been associated with response, or lack thereof, to available therapies. Future investigations should optimize the endotyping of CSU using point-of-care, noninvasive, accessible biomarkers and assess the differences in response to therapy. With multiple treatments in late-stage development, establishing clearly defined CSU endotypes will facilitate future treatment decision-making and tailored treatment approaches and will inform optimal trial design.
Collapse
Affiliation(s)
- David M Lang
- Department of Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, Ohio.
| | - Javed Sheikh
- Department of Clinical Immunology and Allergy, Kaiser Permanente Southern California, Los Angeles, California
| | - Shyam Joshi
- Department of Medicine, Section of Allergy and Immunology, Oregon Health & Science University, Portland, Oregon
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
3
|
Wollam J, Solomon M, Villescaz C, Lanier M, Evans S, Bacon C, Freeman D, Vasquez A, Vest A, Napora J, Charlot B, Cavarlez C, Kim A, Dvorak L, Selfridge B, Huang L, Nevarez A, Dedman H, Brooks J, Frischbutter S, Metz M, Serhan N, Gaudenzio N, Timony G, Martinborough E, Boehm MF, Viswanath V. Inhibition of mast cell degranulation by novel small molecule MRGPRX2 antagonists. J Allergy Clin Immunol 2024; 154:1033-1043. [PMID: 38971540 DOI: 10.1016/j.jaci.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Vest
- Escient Pharmaceuticals, San Diego, Calif
| | - Jim Napora
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | - Andrew Kim
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | | | | | | | | | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France; Genoskin SAS, Toulouse, France
| | | | | | | | | |
Collapse
|
4
|
Olivieri B, Ghilarducci A, Nalin F, Bonadonna P. Mast cell conditions and drug allergy: when to suspect and how to manage. Curr Opin Allergy Clin Immunol 2024; 24:195-202. [PMID: 38814742 DOI: 10.1097/aci.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
PURPOSE OF REVIEW Patients with mast cell disorders frequently experience symptoms from excessive mediator release like histamine and tryptase, ranging from mild flushing to severe anaphylactic responses. Hypersensitivity reactions (HRs) to drugs are a major cause of anaphylaxis in these patients, who often worry about triggering mast cell degranulation when taking medications. The aim of this review is to explore the complex interactions between mast cell disorders and drug HRs, focusing on the clinical challenges of managing these conditions effectively to enhance understanding and guide safer clinical practices. RECENT FINDINGS Among the drugs most commonly associated with hypersensitivity reactions in patients with mast cell disorders are non-steroidal anti-inflammatory drugs, antibiotics, and perioperative agents. Recent studies have highlighted the role of Mas-related G-protein coupled receptor member X2 (MRGPRX2) - a receptor involved in non-immunoglobulin E mediated mast cell degranulation - in exacerbating HRs. Investigations reveal varied drug tolerance among patients, underscoring the need for individual risk assessments. SUMMARY Tailored diagnostic approaches are crucial for confirming drug allergies and assessing tolerance in patients with mastocytosis, preventing unnecessary medication avoidance and ensuring safety before acute situations arise.
Collapse
Affiliation(s)
- Bianca Olivieri
- Allergy Unit, University Hospital of Verona, Policlinico G.B. Rossi, Verona, Italy
| | | | | | | |
Collapse
|
5
|
Jordan J, Levy JH, Gonzalez-Estrada A. Perioperative anaphylaxis: updates on pathophysiology. Curr Opin Allergy Clin Immunol 2024; 24:183-188. [PMID: 38743470 DOI: 10.1097/aci.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PURPOSE OF REVIEW Perioperative anaphylaxis has historically been attributed to IgE/FcεRI-mediated reactions; there is now recognition of allergic and nonallergic triggers encompassing various reactions beyond IgE-mediated responses. This review aims to present recent advancements in knowledge regarding the mechanisms and pathophysiology of perioperative anaphylaxis. RECENT FINDINGS Emerging evidence highlights the role of the mast-cell related G-coupled protein receptor X2 pathway in direct mast cell degranulation, shedding light on previously unknown mechanisms. This pathway, alongside traditional IgE/FcεRI-mediated reactions, contributes to the complex nature of anaphylactic reactions. Investigations into the microbiota-anaphylaxis connection are ongoing, with potential implications for future treatment strategies. While serum tryptase levels serve as mast cell activation indicators, identifying triggers remains challenging. A range of mediators have been associated with anaphylaxis, including vasoactive peptides, proteases, lipid molecules, cytokines, chemokines, interleukins, complement components, and coagulation factors. SUMMARY Further understanding of clinical endotypes and the microenvironment where anaphylactic reactions unfold is essential for standardizing mediator testing and characterization in perioperative anaphylaxis. Ongoing research aims to elucidate the mechanisms, pathways, and mediators involved across multiple organ systems, including the cardiovascular, respiratory, and integumentary systems, which will be crucial for improving patient outcomes.
Collapse
Affiliation(s)
- Justin Jordan
- TMC Health Medical Education Program, Tucson, Arizona
| | - Jerrold H Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| | | |
Collapse
|
6
|
Kumar M, Choi YG, Wong T, Li PH, Chow BKC. Beyond the classic players: Mas-related G protein-coupled receptor member X2 role in pruritus and skin diseases. J Eur Acad Dermatol Venereol 2024. [PMID: 39044547 DOI: 10.1111/jdv.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU), atopic dermatitis (AD), psoriasis and rosacea are highly prevalent inflammatory skin conditions which impose a significant burden on patients' quality of life. Their pathophysiology is likely multifactorial, involving genetic, immune and environmental factors. Recent advancements in the field have demonstrated the key role of mast cells (MC) in the pathophysiology of these conditions. The Mas-related G protein-coupled receptor X2 (MRGPRX2) has emerged as a promising non-IgE-mediated MC activation receptor. MRGPRX2 is predominately expressed on MC and activated by endogenous and exogenous ligands, leading to MC degranulation and release of various pro-inflammatory mediators. Mounting evidence on the presence of endogenous MRGPRX2 agonists (substance P, cortistatin-14, LL37, PAMP-12 and VIP) and its high expression among patients with CSU, AD, rosacea, psoriasis and chronic pruritus emphasizes the pathogenic role of MRGPRX2 in these conditions. Despite the currently available treatments, there remains a pressing need for novel drug targets and treatment options for these chronic inflammatory skin conditions. Here, we reviewed the pathogenic role of MRGPRX2 and its potential as a novel therapeutic target and provided an update on future research directions.
Collapse
Affiliation(s)
- Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ye Gi Choi
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Trevor Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Philip H Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
7
|
Alvarez-Arango S, Kumar M, Chow TG, Sabato V. Non-IgE-Mediated Immediate Drug-Induced Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1109-1119. [PMID: 38423288 PMCID: PMC11081849 DOI: 10.1016/j.jaip.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Immediate drug-induced hypersensitivity reactions (IDHSRs) have conventionally been attributed to an immunoglobulin E (IgE)-mediated mechanism. Nevertheless, it has now been acknowledged that IDHSRs can also occur independently of IgE involvement. Non-IgE-mediated IDHSRs encompass the activation of effector cells, both mast cell-dependent and -independent and the initiation of inflammatory pathways through immunogenic and nonimmunogenic mechanisms. The IDHSRs involve inflammatory mediators beyond histamine, including the platelet-activating factor, which activates multiple cell types, including smooth muscle, endothelium, and MC, and evidence supports its importance in IgE-mediated reactions in humans. Clinically, distinguishing IgE from non-IgE mechanisms is crucial for future treatment strategies, including drug(s) restriction, readministration approaches, and pretreatment considerations. However, this presents significant challenges because certain drugs can trigger both mechanisms, and their presentations can appear similarly, ranging from mild to life-threatening symptoms. Thus, history alone is often inadequate for differentiation, and skin tests lack a standardized approach. Moreover, drug-specific IgE immunoassays have favorable specificity but low sensitivity, and the usefulness of the basophil activation test remains debatable. Lastly, no biomarker reliably differentiates between both mechanisms. Whereas non-IgE-mediated mechanisms likely predominate in IDHSRs, reclassifying most drug-related IDHSRs as non-IgE-mediated, with suggested prevention through dose administration adjustments, is premature and risky. Therefore, continued research and validated diagnostic tests are crucial to improving our capacity to distinguish between these mechanisms, ultimately enhancing patient care.
Collapse
Affiliation(s)
- Santiago Alvarez-Arango
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Mukesh Kumar
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR
| | - Timothy G Chow
- Division of Allergy and Immunology, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, Antwerp University Hospital, University Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Villanueva CR, Barksdale K, Owolabi T, Bridges D, Chichester K, Saini S, Oliver ET. Functional human skin explants as tools for assessing mast cell activation and inhibition. FRONTIERS IN ALLERGY 2024; 5:1373511. [PMID: 38601026 PMCID: PMC11004268 DOI: 10.3389/falgy.2024.1373511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Mast cells are activated through a variety of different receptors to release preformed granules and mediators synthesized de novo. However, the physiology and function of mast cells are not fully understood. Traditional studies of mast cell activation in humans have utilized cultures of tissue-derived mast cells including CD34+ progenitor cells or well-characterized commercially available cell lines. One limitation of these methods is that mast cells are no longer in a natural state. Therefore, their applicability to human skin disorders may be limited. Human skin explant models have been utilized to investigate the short-term effects of cell mediators, drugs, and irritants on skin while avoiding the ethical concerns surrounding in vivo stimulation studies with non-approved agents. Nonetheless, few studies have utilized intact human tissue to study mast cell degranulation. This "Methods" paper describes the development and application of an intact skin explant model to study human mast cell activation. In this manuscript, we share our protocol for setting up ex vivo human skin explants and describe the results of stimulation experiments and techniques to minimize trauma-induced histamine release. Skin explants were generated using de-identified, full-thickness, non-diseased skin specimens from plastic and reconstructive surgeries. Results were reproducible and demonstrated FcɛRI- and MRGPRX2-induced mediator release which was inhibited with the use of a BTK inhibitor and QWF, respectively. Thus, this explant model provides a quick and accessible method of assessing human skin mast cell activation and inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric T. Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Mayorga C, Ariza A, Muñoz-Cano R, Sabato V, Doña I, Torres MJ. Biomarkers of immediate drug hypersensitivity. Allergy 2024; 79:601-612. [PMID: 37947156 DOI: 10.1111/all.15933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Immediate drug hypersensitivity reactions (IDHRs) are a burden for patients and the health systems. This problem increases when taking into account that only a small proportion of patients initially labelled as allergic are finally confirmed after an allergological workup. The diverse nature of drugs involved will imply different interactions with the immunological system. Therefore, IDHRs can be produced by a wide array of mechanisms mediated by the drug interaction with specific antibodies or directly on effector target cells. These heterogeneous mechanisms imply an enhanced complexity for an accurate diagnosis and the identification of the phenotype and endotype at early stages of the reaction is of vital importance. Currently, several endophenotypic categories (type I IgE/non-IgE, cytokine release, Mast-related G-protein coupled receptor X2 (MRGPRX2) or Cyclooxygenase-1 (COX-1) inhibition and their associated biomarkers have been proposed. A precise knowledge of endotypes will permit to discriminate patients within the same phenotype, which is crucial in order to personalise diagnosis, future treatment and prevention to improve the patient's quality of life.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
| | - Rosa Muñoz-Cano
- Allergy Department, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer - IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology, Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Inmaculada Doña
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Maria J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| |
Collapse
|
10
|
Baldo BA. MRGPRX2, drug pseudoallergies, inflammatory diseases, mechanisms and distinguishing MRGPRX2- and IgE/FcεRI-mediated events. Br J Clin Pharmacol 2023; 89:3232-3246. [PMID: 37430437 DOI: 10.1111/bcp.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
MRGPRX2, a novel Gaq -coupled human mast cell receptor, mediates non-immune adverse reactions without the involvement of antibody priming. Constitutively expressed by human skin mast cells, MRGPRX2 modulates cell degranulation producing pseudoallergies manifesting as itch, inflammation and pain. The term pseudoallergy is defined in relation to adverse drug reactions in general and immune/non-immune-mediated reactions in particular. A list of drugs with MRGPRX2 activity is presented, including a detailed examination of three important and widely used approved therapies: neuromuscular blockers, quinolones and opioids. For the clinician, the significance of MRGPRX2 is considered as an aid in distinguishing and ultimately identifying specific immune and non-immune inflammatory reactions. Anaphylactoid/anaphylactic reactions, neurogenic inflammation and inflammatory diseases with a clear or strongly suspected association with MRGPRX2 activation are examined. Inflammatory diseases include chronic urticaria, rosacea, atopic dermatitis, allergic contact dermatitis, mastocytosis, allergic asthma, ulcerative colitis and rheumatoid arthritis. MRGPRX2- and allergic IgE/FcεRI-mediated reactions may be clinically similar. Importantly, the usual testing procedures do not distinguish the two mechanisms. Currently, identification of MRGPRX2 activation and diagnosis of pseudoallergic reactions is generally viewed as a process of exclusion once other non-immune and immune processes, particularly IgE/FcεRI-mediated degranulation of mast cells, are ruled out. This does not take into account that MRGPRX2 signals via β-arrestin, which can be utilized to detect MRGPRX2 activation by employing MRGPRX2 transfected cells to assess MRGPRX2 activation via two pathways, the G-protein-independent β-arrestin pathway and the G-protein-dependent Ca2+ pathway. Testing procedures, interpretations for distinguishing mechanisms, patient diagnosis, agonist identification and drug safety evaluations are addressed.
Collapse
Affiliation(s)
- Brian A Baldo
- Royal North Shore Hospital of Sydney, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Zhang Y, Huang Y, Dang B, Hu S, Zhao C, Wang Y, Yuan Y, Liu R. Fisetin alleviates chronic urticaria by inhibiting mast cell activation via MRGPRX2. J Pharm Pharmacol 2023; 75:1310-1321. [PMID: 37410860 DOI: 10.1093/jpp/rgad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES The activation of mast cell (MC) plays an important part in the pathogenesis of chronic urticaria (CU), and the expression of MRGPRX2 (Mas-related G-protein coupled receptor X2) and the circulating levels of SP (substance P) in skin MC of CU patients increased. Fisetin is a natural flavonoid with anti-inflammatory and antiallergic pharmacological effects. This study aimed to investigate the inhibitory effect of fisetin on CU via MRGPRX2 and its possible molecular mechanisms. METHODS OVA/SP co-stimulated and SP-stimulated CU like murine models were used to evaluate the effect of fisetin on CU. MRGPRX2/HEK293 cells and LAD2 cells were used to perform the antagonism effect of fisetin on MC via MRGPRX2. KEY FINDINGS The results indicated that fisetin prevented urticaria-like symptoms in murine CU models, and inhibited MCs activation by suppressing calcium mobilization and degranulation of cytokines and chemokines via binding to MRGPRX2. The bioinformatics analysis showed that fisetin might have an interaction relationship with Akt in CU. The western blotting experiments showed that fisetin downregulated the phosphorylation levels of Akt, P38, NF-κB, and PLCγ in C48/80 activated LAD2 cells. CONCLUSIONS Fisetin alleviates CU progression by inhibiting mast cell activation via MRGPRX2, which may be a novel therapeutic candidate for CU.
Collapse
Affiliation(s)
- Yonghui Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yihan Huang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baowen Dang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiting Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenrui Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuejin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yujuan Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rui Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
12
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
13
|
Elieh-Ali-Komi D, Metz M, Kolkhir P, Kocatürk E, Scheffel J, Frischbutter S, Terhorst-Molawi D, Fox L, Maurer M. Chronic urticaria and the pathogenic role of mast cells. Allergol Int 2023:S1323-8930(23)00047-3. [PMID: 37210251 DOI: 10.1016/j.alit.2023.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023] Open
Abstract
The signs and symptoms of chronic urticaria (CU) are caused by the activation and degranulation of skin mast cells (MCs). Recent studies have added to our understanding of how and why skin MCs are involved and different in CU. Also, novel and relevant mechanisms of MC activation in CU have been identified and characterized. Finally, the use of MC-targeted and MC mediator-specific treatments has helped to better define the role of the skin environment, the contribution of specific MC mediators, and the relevance of MC crosstalk with other cells in the pathogenesis of CU. Here, we review these recent findings and their impact on our understanding of CU, with a focus on chronic spontaneous urticaria (CSU). Also, we highlight open questions, issues of controversy, and unmet needs, and we suggest what studies should be performed moving forward.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Emek Kocatürk
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany; Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Lena Fox
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| |
Collapse
|
14
|
Kolkhir P, Ali H, Babina M, Ebo D, Sabato V, Elst J, Frischbutter S, Pyatilova P, Maurer M. MRGPRX2 in drug allergy: What we know and what we do not know. J Allergy Clin Immunol 2023; 151:410-412. [PMID: 36089079 PMCID: PMC9905269 DOI: 10.1016/j.jaci.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Pavel Kolkhir
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Didier Ebo
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Jessy Elst
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Stefan Frischbutter
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Pyatilova
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Baldo BA, Pham NH. Opioid toxicity: histamine, hypersensitivity, and MRGPRX2. Arch Toxicol 2023; 97:359-375. [PMID: 36344690 DOI: 10.1007/s00204-022-03402-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Insights into the pathophysiology of many non-immune-mediated drug reactions referred to as toxicities, sensitivities, intolerances, or pseudoallergies have resulted from research identifying the mastocyte-related G-protein-coupled receptor (GPCR) member X2 (MRGPRX2), a human mast cell receptor mediating adverse reactions without the involvement of antibody priming. Opioid-induced degranulation of mast cells, particularly morphine, provoking release of histamine and other preformed mediators and causing hemodynamic and cutaneous changes seen as flushing, headache and wheal and flare reactions in the skin, is an example of results of MRGPRX2 activation. Opioids including morphine, codeine, dextromethorphan and metazocine as well as endogenous prodynorphin opioid peptides activate MRGPRX2 at concentrations causing mast cell degranulation. Unlike the canonical opioid receptors, MRGPRX2 shows stereochemical recognition preference for dextro rather than levo opioid enantiomers. Opioid analgesic drugs (OADs) display a range of histamine-releasing potencies from the strong releaser morphine to doubtful releasers like hydromorphone and the non-releaser fentanyl. Whether there is a correlation between histamine release by individual OADs, MRGPRX2 activation, and presence or absence of adverse cutaneous effects is not known. To investigate the question, ongoing research with recently pursued methodologies and strategies employing basophil and mast cell tests resulting from MRGPRX2 insights should help to elucidate whether or not an opioid's histamine-releasing potency, and its property of provoking an adverse reaction, are each a reflection of its activation of MRGPRX2.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia. .,Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia.
| | - Nghia H Pham
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia.,Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
16
|
Toscano A, Elst J, Van Gasse AL, Beyens M, van der Poorten ML, Bridts CH, Mertens C, Van Houdt M, Hagendorens MM, Van Remoortel S, Timmermans JP, Ebo DG, Sabato V. Mas-related G protein-coupled receptor MRGPRX2 in human basophils: Expression and functional studies. Front Immunol 2023; 13:1026304. [PMID: 36726977 PMCID: PMC9885256 DOI: 10.3389/fimmu.2022.1026304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Occupancy of MRGPRX2 heralds a new era in our understandings of immediate drug hypersensitivity reactions (IDHRs), but a constitutive expression of this receptor by basophils is debated. Objective To explore the expression and functionality of MRGPRX2 in and on basophils. Methods Basophils from patients with birch pollen allergy, IDHRs to moxifloxacin, and healthy controls were studied in different conditions, that is, in rest, after stimulation with anti-IgE, recombinant major birch pollen allergen (rBet v 1), moxifloxacin, fMLP, substance P (SP), or other potential basophil secretagogues. In a separate set of experiments, basophils were studied after purification and resuspension in different media. Results Resting whole blood basophils barely express MRGPRX2 on their surface and are unresponsive to SP or moxifloxacin. However, surface MRGPRX2 is quickly upregulated upon incubation with anti-IgE or fMLP. Pre-stimulation with anti-IgE can induce a synergic effect on basophil degranulation in IgE-responsive subjects after incubation with SP or moxifloxacin, provided that basophils have been obtained from patients who experienced an IDHR to moxifloxacin. Cell purification can trigger a "spontaneous" and functional upregulation of MRGPRX2 on basophils, not seen in whole blood cells, and its surface density can be influenced by distinct culture media. Conclusion Basophils barely express MRGPRX2 in resting conditions. However, the receptor can be quickly upregulated after stimulation with anti-IgE, fMLP, or after purification, making cells responsive to MRGPRX2 occupation. We anticipate that such "conditioned" basophils constitute a model to explore MRGPRX2 agonism or antagonism, including IDHRs originating from the occupation of this receptor.
Collapse
Affiliation(s)
- Alessandro Toscano
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
- Post-Graduate School of Allergology and Clinical Immunology, University of Milan, Milan, Italy
| | - Jessy Elst
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Athina L. Van Gasse
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
- Department of Pediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Pediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Michiel Beyens
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Marie-Line van der Poorten
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
- Department of Pediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Pediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Chris H. Bridts
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Michel Van Houdt
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Margo M. Hagendorens
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
- Department of Pediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Pediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Didier G. Ebo
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
- Algemeen Ziekenhuis (AZ) Jan Palfijn Gent, Department of Immunology and Allergology, Ghent, Belgium
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
- Algemeen Ziekenhuis (AZ) Jan Palfijn Gent, Department of Immunology and Allergology, Ghent, Belgium
| |
Collapse
|
17
|
Bawazir M, Amponnawarat A, Hui Y, Oskeritzian CA, Ali H. Inhibition of MRGPRX2 but not FcεRI or MrgprB2-mediated mast cell degranulation by a small molecule inverse receptor agonist. Front Immunol 2022; 13:1033794. [PMID: 36275683 PMCID: PMC9582160 DOI: 10.3389/fimmu.2022.1033794] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mas-related G protein-coupled receptor-X2 (MRGPRX2) expressed on mast cells (MCs) contributes to hypersensitivity reactions to cationic US-Food and Drug Administration (FDA) approved drugs such as the neuromuscular blocking agent, rocuronium. In addition, activation of MRGPRX2 by the neuropeptide substance P (SP) and the pro-adrenomedullin peptide (PAMP-12) is associated with a variety of cutaneous conditions such as neurogenic inflammation, pain, atopic dermatitis, urticaria, and itch. Thus, small molecules aimed at blocking MRGPRX2 constitute potential options for modulating IgE-independent MC-mediated disorders. Two inverse MRGPRX2 agonists, named C9 and C9-6, have recently been identified, which inhibit basal G protein activation and agonist-induced calcium mobilization in transfected HEK293 cells. Substance P serves as a balanced agonist for MRGPRX2 whereby it activates both G protein-mediated degranulation and β-arrestin-mediated receptor internalization. The purpose of this study was to determine if C9 blocks MRGPRX2's G protein and β-arrestin-mediated signaling and to determine its specificity. We found that C9, but not its inactive analog C7, inhibited degranulation in RBL-2H3 cells stably expressing MRGPRX2 in response to SP, PAMP-12 and rocuronium with an IC50 value of ~300 nM. C9 also inhibited degranulation as measured by cell surface expression of CD63, CD107a and β-hexosaminidase release in LAD2 cells and human skin-derived MCs in response to SP but not the anaphylatoxin, C3a or FcϵRI-aggregation. Furthermore, C9 inhibited β-arrestin recruitment and MRGPRX2 internalization in response to SP and PAMP-12. We found that a G protein-coupling defective missense MRGPRX2 variant (V282M) displays constitutive activity for β-arrestin recruitment, and that this response was significantly inhibited by C9. Rocuronium, SP and PAMP-12 caused degranulation in mouse peritoneal MCs and these responses were abolished in the absence of MrgprB2 or cells treated with pertussis toxin but C9 had no effect. These findings suggest that C9 could provide an important framework for developing novel therapeutic approaches for the treatment of IgE-independent MC-mediated drug hypersensitivity and cutaneous disorders.
Collapse
Affiliation(s)
- Maram Bawazir
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Wang Z, Li Z, Bal G, Franke K, Zuberbier T, Babina M. β-arrestin-1 and β-arrestin-2 Restrain MRGPRX2-Triggered Degranulation and ERK1/2 Activation in Human Skin Mast Cells. FRONTIERS IN ALLERGY 2022; 3:930233. [PMID: 35910860 PMCID: PMC9337275 DOI: 10.3389/falgy.2022.930233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
As a novel receptor that efficiently elicits degranulation upon binding to one of its numerous ligands, MRGPRX2 has moved to the center of attention in mast cell (MC) research. Indeed, MRGPRX2 is believed to be a major component of pseudo-allergic reactions to drugs and of neuropeptide-elicited MC activation in skin diseases alike. MRGPRX2 signals via G proteins which organize downstream events ultimately leading to granule discharge. Skin MCs require both PI3K and ERK1/2 cascades for efficient exocytosis. β-arrestins act as opponents of G proteins and lead to signal termination with or without subsequent internalization. We recently demonstrated that ligand-induced internalization of MRGPRX2 requires the action of β-arrestin-1, but not of β-arrestin-2. Here, by using RNA interference, we find that both isoforms counter skin MC degranulation elicited by three MRGPRX2 agonists but not by FcεRI-aggregation. Analyzing whether this occurs through MRGPRX2 stabilization under β-arrestin attenuation, we find that reduction of β-arrestin-1 indeed leads to increased MRGPRX2 abundance, while this is not observed for β-arrestin-2. This led us speculate that β-arrestin-2 is involved in signal termination without cellular uptake of MRGPRX2. This was indeed found to be the case, whereby interference with β-arrestin-2 has an even stronger positive effect on ERK1/2 phosphorylation compared to β-arrestin-1 perturbation. Neither β-arrestin-1 nor β-arrestin-2 had an impact on AKT phosphorylation nor affected signaling via the canonical FcεRI-dependent route. We conclude that in skin MCs, β-arrestin-2 is chiefly involved in signal termination, whereas β-arrestin-1 exerts its effects by controlling MRGPRX2 abundance.
Collapse
Affiliation(s)
- Zhao Wang
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
19
|
Pyatilova P, Ashry T, Luo Y, He J, Bonnekoh H, Jiao Q, Moñino-Romero S, Hu M, Scheffel J, Frischbutter S, Hermans MAW, Youngblood BA, Maurer M, Siebenhaar F, Kolkhir P. The Number of MRGPRX2-Expressing Cells Is Increased in Skin Lesions of Patients With Indolent Systemic Mastocytosis, But Is Not Linked to Symptom Severity. Front Immunol 2022; 13:930945. [PMID: 35958589 PMCID: PMC9361751 DOI: 10.3389/fimmu.2022.930945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background Recently, the expression of the mast cell (MC) receptor Mas-related G protein–coupled receptor X2 (MRGPRX2) has been detected in lesional skin of adult patients with cutaneous mastocytosis. As of yet, little is known about the clinical relevance of MRGPRX2 and its agonists in patients with mastocytosis, including indolent systemic mastocytosis (ISM). Methods MRGPRX2 and MRGPRX2 agonists, cortistatin (CST), and major basic protein (MBP) were analyzed in lesional and non-lesional skin of patients with ISM and skin of healthy controls by immunohistochemistry. Co-localization of MRGPRX2 and MRGPRX2-mRNA with the MC marker tryptase was assessed by immunofluorescence microscopy and in situ hybridization, respectively. We assessed clinical, demographic, and laboratory data, including mastocytosis activity score (MAS), serum tryptase, and KIT D816V allele burden. Results The number of MRGPRX2-expressing (MRGPRX2+) cells, MRGPRX2-mRNA+ MCs, and CST-expressing (CST+) and MBP-expressing (MBP+) cells was significantly higher in lesional skin as compared to non-lesional skin and/or skin of healthy controls (all p < 0.05). Increased numbers of MRGPRX2+ cells, MRGPRX2-mRNA+ MCs, and CST+ and MBP+ cells were not associated with clinical and laboratory features of ISM, including disease burden, symptom severity, evidence of anaphylaxis, and tryptase levels. Conclusions Skin lesions of patients with ISM showed high numbers of MRGPRX2+ cells, although they were not linked to symptom severity. Clinical relevance of the MRGPRX2-mediated pathway of MC activation in ISM remains unclear and should be investigated in further studies.
Collapse
Affiliation(s)
- Polina Pyatilova
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Tameem Ashry
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yanyan Luo
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Jiajun He
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanna Bonnekoh
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Qingqing Jiao
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sherezade Moñino-Romero
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Man Hu
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Maud A. W. Hermans
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Marcus Maurer
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
- *Correspondence: Pavel Kolkhir,
| |
Collapse
|
20
|
Wang Z, Franke K, Bal G, Li Z, Zuberbier T, Babina M. MRGPRX2-Mediated Degranulation of Human Skin Mast Cells Requires the Operation of Gαi, Gαq, Ca++ Channels, ERK1/2 and PI3K—Interconnection between Early and Late Signaling. Cells 2022; 11:cells11060953. [PMID: 35326404 PMCID: PMC8946553 DOI: 10.3390/cells11060953] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
The recent discovery of MRGPRX2 explains mast cell (MC)-dependent symptoms independently of FcεRI-activation. Because of its novelty, signaling cascades triggered by MRGPRX2 are rudimentarily understood, especially in cutaneous MCs, by which MRGPRX2 is chiefly expressed. Here, MCs purified from human skin were used following preculture or ex vivo and stimulated by FcεRI-aggregation or MRGPRX2 agonists (compound 48/80, Substance P) in the presence/absence of inhibitors. Degranulation was assessed by β-hexosaminidase or histamine release. Phosphorylation events were studied by immunoblotting. As a G protein-coupled receptor, MRGPRX2 signals by activating G proteins; however, their nature has remained controversial. In skin MCs, Gαi and Gαq were required for degranulation, but Gαi was clearly more relevant. Ca++ channels were likewise crucial. Downstream, PI3K was essential for granule discharge initiated by MRGPRX2 or FcεRI. ERK1/2 and JNK were additional participants, especially in the allergic route. Addressing possible points of intersection between early and later events, pERK1/2 and pAKT were found to depend on Gαi, further highlighting its significance. Gαq and Ca++ channels made some contributions to the phosphorylation of ERK. Ca++ differentially affected PI3K activation in FcεRI- vis-à-vis MRGPRX2-signaling, as channel inhibition increased pAKT only when triggered via FcεRI. Collectively, our study significantly extends our understanding of the molecular framework behind granule secretion from skin MCs.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (Z.W.); (K.F.); (G.B.); (Z.L.); (T.Z.)
- Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Kristin Franke
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (Z.W.); (K.F.); (G.B.); (Z.L.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Gürkan Bal
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (Z.W.); (K.F.); (G.B.); (Z.L.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Zhuoran Li
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (Z.W.); (K.F.); (G.B.); (Z.L.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (Z.W.); (K.F.); (G.B.); (Z.L.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Magda Babina
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (Z.W.); (K.F.); (G.B.); (Z.L.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
- Correspondence:
| |
Collapse
|