1
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2025; 46:539-553. [PMID: 39424975 PMCID: PMC11845708 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Guo H, Yuan H, Yu Y, Sun J, Sun Y, Tang Y, Zheng F. Role of skin-homing t-cells in recurrent episodes of atopic dermatitis: a review. Front Immunol 2025; 16:1489277. [PMID: 40040698 PMCID: PMC11876967 DOI: 10.3389/fimmu.2025.1489277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing disease with complex pathogenesis. Among them, inflammation is one of the primary pathogenesis of AD. AD is characterized by infiltration of lymphocytes into the skin's dermis, and the skin homing of lymphocytes plays an essential role in the recurrence of AD. Currently, there is more and more evidence to support this view. This article reviews the relevant role of T lymphocyte skin-homing-related molecules in the recurrence of AD to provide a reference for the cure of AD.
Collapse
Affiliation(s)
- Huimin Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
5
|
Kim M, Del Duca E, Dahabreh D, Lozano-Ojalvo D, Carroll B, Manson M, Bose S, Gour D, NandyMazumdar M, Liu Y, Yu Ekey M, Chowdhury A, Angelov M, Ungar B, Estrada Y, Guttman-Yassky E. Alopecia areata exhibits cutaneous and systemic OX40 activation across atopic backgrounds. Allergy 2024; 79:3401-3414. [PMID: 39115359 DOI: 10.1111/all.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Alopecia areata (AA) is a chronic, nonscarring hair-loss disorder associated with significant quality-of-life impairment and limited treatment options. AA has been recently linked to atopy and shown to exhibit both Th1- and Th2-driven inflammation. However, a comprehensive molecular and cellular characterization across blood and scalp compartments in both atopic and nonatopic patients is lacking. METHODS Lesional and nonlesional scalp biopsies obtained from AA patients with (n = 16) or without (n = 20) atopic history, and 17 demographically matched healthy controls were analyzed with RNA-seq, RT-PCR, and immunohistochemistry. Flow cytometry was also performed on peripheral blood mononuclear cells (PBMCs) from a subset of patients. Differential expression was defined using |fold-change| > 1.5 and false-discovery rate <0.05. RESULTS AA scalp exhibited robust upregulation of Th1- (IFNG, CXCL9, CXCL10, CXCL11) and Th2-related products (CCL26, CCR4, IL10, IL13, TSLP, TNFRSF4/OX40) and shared downregulation of hair keratins, regardless of atopic background, with variable Th17/Th22 modulation. AA patients with atopy exhibited greater inflammatory tone and Th2-skewing (IL10, IL13, IL33, CCR4, CCL26). Disease severity correlated significantly with immune and hair keratin biomarkers and with perifollicular cellular infiltrates. Cutaneous OX40/OX40L upregulation was paralleled by increases in circulating OX40+ and OX40L+ leukocytes, regardless of atopic background. CONCLUSION Our results suggest some atopy-associated immune differences in AA and highlight the OX40 axis as a potential novel therapeutic target that may broadly benefit AA patients.
Collapse
Affiliation(s)
- Madeline Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Dante Dahabreh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Britta Carroll
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meredith Manson
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Swaroop Bose
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Digpal Gour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Monali NandyMazumdar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mitchelle Yu Ekey
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amira Chowdhury
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Angelov
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yeriel Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Brooks SG, Lopez LM, Mashoudy KD, Yosipovitch G, Czarnowicki T. Addressing Unmet Needs in Atopic Dermatitis: Evaluating Disease-Modifying Capabilities of Current and Emerging Therapies. Dermatitis 2024. [PMID: 39465269 DOI: 10.1089/derm.2024.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Atopic dermatitis (AD) is a highly burdensome inflammatory skin condition affecting nearly one-quarter of the pediatric population and often continuing into adulthood. Despite recent advancements in systemic therapies providing temporary symptom relief over the past decade, AD frequently remains difficult to control, necessitating increased dosages or alternative treatments due to recurrent disease. This review synthesizes current literature to identify unmet needs of treating AD beyond medication-related limitations and evaluates existing therapies for their efficacy in modifying underlying disease mechanisms. Key findings include variability in AD pathophysiology and phenotypes across different age groups and ethnicities, indicating a need for research into endotype-specific treatments. The literature also comprises evidence suggesting that select current drugs, such as targeted biologics and Janus Kinase (JAK) inhibitors, may offer long-term disease-modifying benefits. Future management strategies should explore novel approaches, including manipulation of the microbiome, immune response, and neural function, as these may lead to additional improvements in AD treatment and long-term symptom relief.
Collapse
Affiliation(s)
- Sarah G Brooks
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Lourdes M Lopez
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Kayla D Mashoudy
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Gil Yosipovitch
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Tali Czarnowicki
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| |
Collapse
|
7
|
Silverberg JI, Rosmarin D, Chovatiya R, Bieber T, Schleicher S, Beck L, Gooderham M, Chaudhry S, Fanton C, Yu D, Levy J, Liu Y, Miyazaki T, Tagliaferri M, Schmitz C, Nirula A, Kotzin B, Zalevsky J. The regulatory T cell-selective interleukin-2 receptor agonist rezpegaldesleukin in the treatment of inflammatory skin diseases: two randomized, double-blind, placebo-controlled phase 1b trials. Nat Commun 2024; 15:9230. [PMID: 39455575 PMCID: PMC11511931 DOI: 10.1038/s41467-024-53384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Regulatory T cell (Treg) impairment is implicated in the pathogenesis of chronic inflammatory diseases, but relatively little is known about the therapeutic potential of Treg restoration. Here we present clinical evidence for the Treg-selective interleukin-2 receptor agonist rezpegaldesleukin (REZPEG) in two randomized, double-blind, placebo-controlled Phase 1b trials in patients with moderate-to-severe atopic dermatitis (AD) (NCT04081350) or chronic plaque psoriasis (PsO) (NCT04119557). Key inclusion criteria for AD included an Eczema Area and Severity Index (EASI) score ≥ 16 and a validated Investigator Global Assessment for Atopic Dermatitis (vIGA-AD) ≥ 3, and for PsO included a Psoriasis Area and Severity Index (PASI) score of ≥ 12 and a static Physician's Global Assessment (sPGA) score of ≥ 3. REZPEG is safe and well-tolerated and demonstrates consistent pharmacokinetics in participants receiving subcutaneous doses of 10 to 12 µg/kg or 24 µg/kg once every 2 weeks for 12 weeks, meeting the primary and secondary objectives, respectively. AD patients receiving the higher dose demonstrate an 83% improvement in EASI score after 12 weeks of treatment. EASI improvement of ≥ 75% (EASI-75) and vIGA-AD responses are maintained for 36 weeks after treatment discontinuation in 71% and 80% of week 12 responders, respectively. These exploratory clinical improvements are accompanied by sustained increases in CD25bright Tregs. REZPEG thus represents a homeostatic approach to cutaneous disease therapy and holds clinical potential in providing long-term, treatment-free disease control.
Collapse
Affiliation(s)
- Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine, Washington, DC, USA
| | - David Rosmarin
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raj Chovatiya
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Medical Dermatology + Immunology Research, Chicago, IL, USA
| | - Thomas Bieber
- Department of Dermatology, University Hospital, Zürich, Switzerland
- Medicine Campus, Davos, Switzerland
| | | | - Lisa Beck
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Danni Yu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | - Yi Liu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | | | | | - Ajay Nirula
- Recludix Pharma, San Diego, CA, USA, formerly affiliated with Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
8
|
Enriquez JS, Wang X, Velatooru LR, Han W, Bijani P, Ni X. Small-Molecule CCR4 Antagonists in Cutaneous T-cell Lymphoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2756-2765. [PMID: 39302105 PMCID: PMC11494885 DOI: 10.1158/2767-9764.crc-24-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
SIGNIFICANCE Our findings are of interest to readers because they bring new evidence that small-molecule CCR4 antagonists may be an alternative therapeutic strategy to target CCR4+ CTCL cells. They may inhibit CCR4 function but not eradicate cells, so the side effects may be avoided or minimized.
Collapse
Affiliation(s)
- José S. Enriquez
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaohong Wang
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loka Reddy Velatooru
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Han
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pedram Bijani
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Abu SL, Hehar NK, Chigbu DI. Novel therapeutic receptor agonists and antagonists in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2024; 24:380-389. [PMID: 39079155 DOI: 10.1097/aci.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is characterized by the development of pathophysiological changes to the ocular surface, which occurs when pro-allergic and pro-inflammatory mediators interact with their cognate receptors expressed on immune and nonimmune cells. Traditional treatments with antihistamines and corticosteroids provide relief, but there is a need for more efficacious and tolerable long-term therapy with a better safety profile. This article aims to provide an overview of the mode of action and clinical application of agonist therapies targeting glucocorticoid, melanocortin, and toll-like receptors, as well as antagonist therapies targeting cytokine, chemokine, integrin, and histamine receptors. RECENT FINDINGS There has been considerable advancement in immunology and pharmacology, as well as a greater understanding of the cellular and molecular mechanisms of allergic conjunctivitis. Recent research advancing therapy for allergic conjunctivitis has focused on developing synthetic molecules and biologics that can interfere with the process of the allergic immune reaction. SUMMARY This review discusses novel therapeutic receptors being explored agonistically or antagonistically to develop alternative treatment options for allergic conjunctivitis. These novel approaches hold promise for improving the management of allergic eye diseases, offering patients hope for more effective and safer treatment options in the future.
Collapse
Affiliation(s)
- Sampson L Abu
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, USA
| | | | | |
Collapse
|
10
|
Obed O, Chong AC, Su M, Ong PY. Emerging drugs for the treatment of atopic dermatitis: a focus on phase 2 and phase 3 trials. Expert Opin Emerg Drugs 2024; 29:233-249. [PMID: 38662529 DOI: 10.1080/14728214.2024.2345643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 04/30/2024]
Abstract
INTRODUCTION Atopic dermatitis (AD) is an inflammatory skin condition that affects millions of pediatric and adult patients with well-studied impact on morbidity and quality of life. Management occurs in a stepwise fashion beginning with preventative measures before immunomodulators are introduced. However, challenges remain in treatment of moderate-to-severe atopic dermatitis that is refractory to first- and second-line treatments and there are only few topical anti-inflammatory options, especially for pediatric patients. AREAS COVERED New medications are required to address these gaps as lesions may persist despite treatment or patients may discontinue treatment due to actual or anticipated adverse effects of mainstay medications. Emerging research into the pathophysiology of AD and the immune system at large has provided opportunities for novel interventions aimed at stopping AD mechanisms at new checkpoints. Clinical trials for 36 agents currently in phase 2 or phase 3 are evaluated with particular focus on the studies for, B244, CBP-201, tapinarof, lebrikizumab, nemolizumab, amlitelimab, and rocatinlimab as they explore novel pathways and have some of the most promising results. EXPERT OPINION These clinical trials contribute to the evolution of AD treatment toward greater precision based on salient pathways with a particular focus on moderate-to-severe AD to enhance efficacy and minimize adverse effects.
Collapse
Affiliation(s)
- Ogechi Obed
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Malcolm Su
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles; Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Giovenzana A, Codazzi V, Pandolfo M, Petrelli A. T cell trafficking in human chronic inflammatory diseases. iScience 2024; 27:110528. [PMID: 39171290 PMCID: PMC11338127 DOI: 10.1016/j.isci.2024.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Circulating T cells, which migrate from the periphery to sites of tissue inflammation, play a crucial role in the development of various chronic inflammatory conditions. Recent research has highlighted subsets of tissue-resident T cells that acquire migratory capabilities and re-enter circulation, referred to here as "recirculating T cells." In this review, we examine recent advancements in understanding the biology of T cell trafficking in diseases where T cell infiltration is pivotal, such as multiple sclerosis and inflammatory bowel diseases, as well as in metabolic disorders where the role of T cell migration is less understood. Additionally, we discuss current insights into therapeutic strategies aimed at modulating T cell circulation across tissues and the application of state-of-the-art technologies for studying recirculation in humans. This review underscores the significance of investigating T trafficking as a novel potential target for therapeutic interventions across a spectrum of human chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anna Giovenzana
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Codazzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Pandolfo
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
12
|
David E, Hawkins K, Shokrian N, Del Duca E, Guttman-Yassky E. Monoclonal antibodies for moderate-to-severe atopic dermatitis: a look at phase III and beyond. Expert Opin Biol Ther 2024; 24:471-489. [PMID: 38888099 DOI: 10.1080/14712598.2024.2368192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The understanding of atopic dermatitis (AD) pathogenesis has rapidly expanded in recent years, catalyzing the development of new targeted monoclonal antibody treatments for AD. AREAS COVERED This review aims to summarize the latest clinical and molecular data about monoclonal antibodies that are in later stages of development for AD, either in Phase 3 trials or in the pharmacopoeia for up to 5 years, highlighting the biologic underpinning of each drug's mechanism of action and the potential modulation of the AD immune profile. EXPERT OPINION The therapeutic pipeline of AD treatments is speedily progressing, introducing the potential for a personalized medical approach in the near future. Understanding how targeting pathogenic players in AD modifies disease progression and symptomatology is key in improving therapeutic choices for patients and identifying ideal patient candidates.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Hawkins
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Neda Shokrian
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Zengarini C, Guglielmo A, Mussi M, Motta G, Agostinelli C, Sabattini E, Piraccini BM, Pileri A. A Narrative Review of the State of the Art of CCR4-Based Therapies in Cutaneous T-Cell Lymphomas: Focus on Mogamulizumab and Future Treatments. Antibodies (Basel) 2024; 13:32. [PMID: 38804300 PMCID: PMC11130839 DOI: 10.3390/antib13020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The CCR4 receptor is a pivotal target in cutaneous T-cell lymphoma (CTCL) therapy due to its role in impairing immune responses against malignant T-cells and expression profiles. Monoclonal antibodies like mogamulizumab effectively bind to CCR4, reducing tumour burden and enhancing patient outcomes by inhibiting the receptor's interaction with ligands, thereby hindering malignant T-cell migration and survival. Combining CCR4 antibodies with chemotherapy, radiation, and other drugs is being explored for synergistic effects. Additionally, small-molecular inhibitors, old pharmacological agents interacting with CCR4, and CAR-T therapies are under investigation. Challenges include drug resistance, off-target effects, and patient selection, addressed through ongoing trials refining protocols and identifying biomarkers. Despite advancements, real-life data for most of the emerging treatments are needed to temper expectations. In conclusion, CCR4-targeted therapies show promise for CTCL management, but challenges persist. Continued research aims to optimise treatments, enhance outcomes, and transform CTCL management. This review aims to elucidate the biological rationale and the several agents under various stages of development and clinical evaluation with the actual known data.
Collapse
Affiliation(s)
- Corrado Zengarini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alba Guglielmo
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Martina Mussi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Division of Haematopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Division of Haematopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Division of Haematopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Bianca Maria Piraccini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|