1
|
Liu SY, Kelly-Hedrick M, Komisarow J, Hatfield J, Ohnuma T, Treggiari MM, Colton K, Arulraja E, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, James ML, Raghunathan K, Krishnamoorthy V. Association of Early Dexmedetomidine Utilization With Clinical Outcomes After Moderate-Severe Traumatic Brain Injury: A Retrospective Cohort Study. Anesth Analg 2024; 139:366-374. [PMID: 38335145 PMCID: PMC11250935 DOI: 10.1213/ane.0000000000006869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an expensive and common public health problem. Management of TBI oftentimes includes sedation to facilitate mechanical ventilation (MV) for airway protection. Dexmedetomidine has emerged as a potential candidate for improved patient outcomes when used for early sedation after TBI due to its potential modulation of autonomic dysfunction. We examined early sedation patterns, as well as the association of dexmedetomidine exposure with clinical and functional outcomes among mechanically ventilated patients with moderate-severe TBI (msTBI) in the United States. METHODS We conducted a retrospective cohort study using data from the Premier dataset and identified a cohort of critically ill adult patients with msTBI who required MV from January 2016 to June 2020. msTBI was defined by head-neck abbreviated injury scale (AIS) values of 3 (serious), 4 (severe), and 5 (critical). We described early continuous sedative utilization patterns. Using propensity-matched models, we examined the association of early dexmedetomidine exposure (within 2 days of intensive care unit [ICU] admission) with the primary outcome of hospital mortality and the following secondary outcomes: hospital length of stay (LOS), days on MV, vasopressor use after the first 2 days of admission, hemodialysis (HD) after the first 2 days of admission, hospital costs, and discharge disposition. All medications, treatments, and procedures were identified using date-stamped hospital charge codes. RESULTS The study population included 19,751 subjects who required MV within 2 days of ICU admission. The patients were majority male and white. From 2016 to 2020, the annual percent utilization of dexmedetomidine increased from 4.05% to 8.60%. After propensity score matching, early dexmedetomidine exposure was associated with reduced odds of hospital mortality (odds ratio [OR], 0.59; 95% confidence interval [CI], 0.47-0.74; P < .0001), increased risk for liberation from MV (hazard ratio [HR], 1.20; 95% CI, 1.09-1.33; P = .0003), and reduced LOS (HR, 1.11; 95% CI, 1.01-1.22; P = .033). Exposure to early dexmedetomidine was not associated with odds of HD (OR, 1.14; 95% CI, 0.73-1.78; P = .56), vasopressor utilization (OR, 1.10; 95% CI, 0.78-1.55; P = .60), or increased hospital costs (relative cost ratio, 1.98; 95% CI, 0.93-1.03; P = .66). CONCLUSIONS Dexmedetomidine is being utilized increasingly as a sedative for mechanically ventilated patients with msTBI. Early dexmedetomidine exposure may lead to improved patient outcomes in this population.
Collapse
Affiliation(s)
- Sunny Yang Liu
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
| | - Margot Kelly-Hedrick
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
| | - Jordan Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
| | - Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
| | - Miriam M. Treggiari
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | | | - Evangeline Arulraja
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | | | | | | | | | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, NC
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| |
Collapse
|
2
|
Li J, Li X, Li X, Liang Z, Wang Z, Shahzad KA, Xu M, Tan F. Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37497-37512. [PMID: 38980910 DOI: 10.1021/acsami.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
- The Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
- The Royal College of Surgeons of England, London WC2A3PE, U.K
| |
Collapse
|
3
|
Radabaugh HL, Ferguson AR, Bramlett HM, Dietrich WD. Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation. Neurotherapeutics 2023; 20:1433-1445. [PMID: 37525025 PMCID: PMC10684440 DOI: 10.1007/s13311-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogeneity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are establishing the core framework needed for successfully addressing the translatability crisis of TBI.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Zhang D, Ren Y, He Y, Chang R, Guo S, Ma S, Guan F, Yao M. In situ forming and biocompatible hyaluronic acid hydrogel with reactive oxygen species-scavenging activity to improve traumatic brain injury repair by suppressing oxidative stress and neuroinflammation. Mater Today Bio 2022; 15:100278. [PMID: 35601897 PMCID: PMC9119840 DOI: 10.1016/j.mtbio.2022.100278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/14/2023] Open
Abstract
The efficacy of neural repair and regeneration strategies for traumatic brain injury (TBI) treatment is greatly hampered by the harsh brain lesion microenvironment including oxidative stress and hyper-inflammatory response. Functionalized hydrogel with the capability of oxidative stress suppression and neuroinflammation inhibition will greatly contribute to the repairment of TBI. Herein, antioxidant gallic acid-grafted hyaluronic acid (HGA) was combined with hyaluronic acid-tyramine (HT) polymer to develop an injectable hydrogel by dual-enzymatically crosslinking method. The resulting HT/HGA hydrogel is biocompatible and possesses effective scavenging activity against DPPH and hydroxyl radicals. Meanwhile, this hydrogel improved cell viability and reduced intracellular reactive oxygen species (ROS) production under H2O2 insult. The in vivo study showed that in situ injection of HT/HGA hydrogel significantly reduced malondialdehyde (MDA) production and increased glutathione (GSH) expression in lesion area after treatment for 3 or 21 days, which might be associated with the activation of Nrf2/HO-1 pathway. Furthermore, this hydrogel promoted the microglia polarization to M2 (Arg1) phenotype, it also decreased the level of proinflammatory factors including TNF-α and IL-6 and increased anti-inflammatory factor expression of IL-4. Finally, blood-brain barrier (BBB) was protected, neurogenesis in hippocampus was promoted, and the motor, learning and memory ability was enhanced. Therefore, this injectable, biocompatible, and antioxidant hydrogel exhibits a huge potential for treating TBI and allows us to recognize the great value of this novel biomaterial for remodeling brain structure and function.
Collapse
|