1
|
O'Flaherty C. Redox signaling regulation in human spermatozoa: a primary role of peroxiredoxins. Asian J Androl 2025:00129336-990000000-00281. [PMID: 39902615 DOI: 10.4103/aja2024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
ABSTRACT Reactive oxygen species (ROS) play a dual role in mammalian spermatozoa. At high levels, they are detrimental to sperm function since they can promote oxidative stress that produces oxidation of protein, lipids, and sperm DNA. This oxidative damage is associated with male infertility. On the other hand, when ROS are produced at low levels, they participate in the redox signaling necessary for sperm capacitation. Capacitation-associated ROS are produced by the sperm oxidase, whose identity is still elusive, located in the plasma membrane of the spermatozoon. ROS, such as superoxide anion, hydrogen peroxide, nitric oxide, and peroxynitrite, activate protein kinases and inactivate protein phosphatases with the net increase of specific phosphorylation events. Peroxiredoxins (PRDXs), antioxidant enzymes that fight against oxidative stress, regulate redox signaling during capacitation. Among them, PRDX6, which possesses peroxidase and calcium-independent phospholipase A2 (iPLA2) activities, is the primary regulator of redox signaling and the antioxidant response in human spermatozoa. The lysophosphatidic acid signaling is essential to maintain sperm viability by activating the phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT) pathway, and it is regulated by PRDX6 iPLA2, protein kinase C (PKC), and receptor-type protein tyrosine kinase. The understanding of redox signaling is crucial to pave the way for novel diagnostic tools and treatments of male infertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 1Y6, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2025; 32:41-51. [PMID: 39333437 PMCID: PMC11729216 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
3
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
4
|
Almarzouq D, Al-Maghrebi M. NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury. Antioxidants (Basel) 2023; 12:antiox12010145. [PMID: 36671008 PMCID: PMC9855003 DOI: 10.3390/antiox12010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the expression of the NLRP3 inflammasome pathway components. Three groups of male Sprague-Dawley rats (n = 12 each) were studied: sham, unilateral tIRI only and tIRI treated with apocynin, a NOX-specific inhibitor. The tIRI rat model was subjected to 1 h of ischemia followed by 4 h of reperfusion. H&E staining, real time PCR, biochemical assays, and Western blot were utilized to evaluate spermatogenic damage, gene expression, oxidative stress markers, and NLRP3 pathway components, respectively. As a result of tIRI, decreased total antioxidant capacity and suppressed activities of superoxide dismutase and catalase were associated with spermatogenic arrest. The components of the NLRP3 inflammasome pathway (TXNIP, NLRP3, ASC, caspase-1, GSDMD, MMP-9) were upregulated transcriptionally and post-transcriptionally during tIRI. In parallel, tissue inflammation was demonstrated by a marked increase in the concentrations of myeloperoxidase, IL-1β, and IL-18. Apocynin treatment prevented testicular oxidative stress and inflammation. Thus, NOX inhibition by apocynin prevented ROS accumulation, proinflammatory cytokine overexpression and NLRP3 inflammasome activation during tIRI.
Collapse
|
5
|
Aitken RJ, Bromfield EG, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The impact of oxidative stress on reproduction: a focus on gametogenesis and fertilization. Reproduction 2022; 164:F79-F94. [PMID: 35929832 DOI: 10.1530/rep-22-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Many aspects of the reproductive process are impacted by oxidative stress. This article summarizes the chemical nature of reactive oxygen species and their role in both the physiological regulation of reproductive processes and the pathophysiology of infertility. Abstract This article lays out the fundamental principles of oxidative stress. It describes the nature of reactive oxygen species (ROS), the way in which these potentially toxic metabolites interact with cells and how they impact both cellular function and genetic integrity. The mechanisms by which ROS generation is enhanced to the point that the cells' antioxidant defence mechanisms are overwhelmed are also reviewed taking examples from both the male and female reproductive system, with a focus on gametogenesis and fertilization. The important role of external factors in exacerbating oxidative stress and impairing reproductive competence is also examined in terms of their ability to disrupt the physiological redox regulation of reproductive processes. Developing diagnostic and therapeutic strategies to cope with oxidative stress within the reproductive system will depend on the development of a deeper understanding of the nature, source, magnitude, and location of such stress in order to fashion personalized treatments that meet a given patient's clinical needs.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
6
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Keshtgar S, Ghani E. Impact of calcium and reactive oxygen species on human sperm function: Role of NOX5. Andrologia 2022; 54:e14470. [PMID: 35679508 DOI: 10.1111/and.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.
Collapse
Affiliation(s)
- Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Aitken RJ. Role of sperm DNA damage in creating de novo mutations in human offspring: the ‘post-meiotic oocyte collusion’ hypothesis. Reprod Biomed Online 2022; 45:109-124. [PMID: 35513995 DOI: 10.1016/j.rbmo.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
|
9
|
Aitken RJ, Drevet JR, Moazamian A, Gharagozloo P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants (Basel) 2022; 11:antiox11020306. [PMID: 35204189 PMCID: PMC8868102 DOI: 10.3390/antiox11020306] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in defining the functional competence of human spermatozoa. When generated in moderate amounts, ROS promote sperm capacitation by facilitating cholesterol efflux from the plasma membrane, enhancing cAMP generation, inducing cytoplasmic alkalinization, increasing intracellular calcium levels, and stimulating the protein phosphorylation events that drive the attainment of a capacitated state. However, when ROS generation is excessive and/or the antioxidant defences of the reproductive system are compromised, a state of oxidative stress may be induced that disrupts the fertilizing capacity of the spermatozoa and the structural integrity of their DNA. This article focusses on the sources of ROS within this system and examines the circumstances under which the adequacy of antioxidant protection might become a limiting factor. Seminal leukocyte contamination can contribute to oxidative stress in the ejaculate while, in the germ line, the dysregulation of electron transport in the sperm mitochondria, elevated NADPH oxidase activity, or the excessive stimulation of amino acid oxidase action are all potential contributors to oxidative stress. A knowledge of the mechanisms responsible for creating such stress within the human ejaculate is essential in order to develop better antioxidant strategies that avoid the unintentional creation of its reductive counterpart.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: ; Tel.: +61-2-4921-6851
| | - Joël R. Drevet
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
| | - Aron Moazamian
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
- CellOxess LLC, Ewing, NJ 08628, USA;
| | | |
Collapse
|
10
|
Juárez-Rojas L, Casillas F, López A, Betancourt M, Ommati MM, Retana-Márquez S. Physiological role of reactive oxygen species in testis and epididymal spermatozoa. Andrologia 2022; 54:e14367. [PMID: 35034376 DOI: 10.1111/and.14367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 11/26/2022] Open
Abstract
The reactive oxygen species (ROS) play an important role in various aspects of male reproductive function, for spermatozoa to acquire the ability to fertilize. However, the increase in ROS generation, both due to internal and external factors, can induce oxidative stress, causing alterations in the structure and function of phospholipids and proteins. In the nucleus, ROS attack DNA, causing its fragmentation and activation of apoptosis, thus altering gene and protein expression. Accumulating evidence also reveals that endogenously produced ROS can act as second messengers in regulating cell signalling pathways and in the transduction of signals that are responsible for regulating spermatogonia self-renewal and proliferation. In the epididymis, they actively participate in the formation of disulphide bridges required for the final condensation of chromatin, as well as in the phosphorylation and dephosphorylation of proteins contained in the fibrous sheath of the flagellum, stimulating the activation of progressive motility in epididymal spermatozoa. In this review, the role of small amounts of ROS during spermatogenesis and epididymal sperm maturation was discussed.
Collapse
Affiliation(s)
- Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Alma López
- Department of Health Sciences, Autonomous Metropolitan University-Iztapalapa Campus, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Autonomous Metropolitan University-Iztapalapa Campus, Mexico City, Mexico
| | - Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, People's Republic of China
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
11
|
Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants (Basel) 2021; 10:antiox10071025. [PMID: 34202126 PMCID: PMC8300781 DOI: 10.3390/antiox10071025] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell's antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.
Collapse
|
12
|
Miguel-Jiménez S, Pina-Beltrán B, Gimeno-Martos S, Carvajal-Serna M, Casao A, Pérez-Pe R. NADPH Oxidase 5 and Melatonin: Involvement in Ram Sperm Capacitation. Front Cell Dev Biol 2021; 9:655794. [PMID: 34026754 PMCID: PMC8138477 DOI: 10.3389/fcell.2021.655794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an essential role in mammalian sperm capacitation. NADPH oxidase 5 (NOX5) has been described as the main source of ROS production in some mammalian spermatozoa, such as human and equine. On the other hand, melatonin can decrease cellular ROS levels and regulates NOX activity in somatic cells. Therefore, the objectives of this work were (1) to identify NOX5 in ram spermatozoa and analyze its possible changes during in vitro capacitation and (2) to investigate the effect of melatonin on NOX5 expression and localization and on superoxide levels in capacitated ram spermatozoa. Protein bands associated with NOX5 were detected by Western blot analysis. Likewise, indirect immunofluorescence (IIF) revealed six different immunotypes for NOX5, which varied throughout in vitro capacitation. Superoxide (O2⋅–), evaluated by DHE/Yo-Pro-1, rose after in vitro capacitation and in the presence of the calcium ionophore A23187 but decreased in the presence of the NOX inhibitor GKT136901. GKT also reduced the percentage of capacitated and acrosome-reacted spermatozoa that had increased during incubation in capacitating conditions. The presence of melatonin at micromolar concentrations avoided the increment in O2⋅– and the changes in NOX5 immunotypes provoked by capacitation. In conclusion, NOX5 is present in ram spermatozoa and the changes in its distribution, associated with sperm capacitation, can be prevented by melatonin. To this extent, it could imply that melatonin exerts its antioxidant role, at least in part, by modulating NOX5 activity during ram sperm capacitation.
Collapse
Affiliation(s)
- Sara Miguel-Jiménez
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Blanca Pina-Beltrán
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Gimeno-Martos
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Melissa Carvajal-Serna
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Adriana Casao
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosaura Pérez-Pe
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Keshtgar S, Ebrahimi B, Shid-Moosavi SM, Erfani N. NADPH oxidase 5 activation; a novel approach to human sperm cryoinjury. Cell Tissue Bank 2020; 21:675-684. [PMID: 32607683 DOI: 10.1007/s10561-020-09845-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
Sperm cryopreservation leads to various structural and functional damages, some of which induce by oxidative stress. The reactive oxygen species (ROS) generates by mitochondria and membrane NADPH oxidases (NOXs). Among the NOXs, only NOX5 has been identified in the cell membrane of human sperm. This study was designed to clarify the possible role of NOX5 on sperm cryoinjury. Forty human semen samples were washed and randomly divided into fresh and cryopreserved groups. Each group was divided into 4 subgroups containing Ham's F10 (control), 0.1% DMSO (vehicle), 100 nM of PMA (phorbol 12-myristate 13-acetate) and 1 µM of DPI (diphenyleneiodonium), as NOX5 activator and inhibitor. The samples of cryopreserved groups were preserved in liquid nitrogen for 1 month. The sperm kinematics, membrane integrity, ROS production, apoptosis rate, mitochondrial membrane potential (MMP), intracellular ATP and calcium concentration [Ca2+]i were evaluated. The percent of sperm with intact membrane and motile sperm reduced significantly after thawing (p ≤ 0.01). The ROS production (p ≤ 0.01) and the apoptotic rate increased, MMP dissipated, and the percentage of live cells with high [Ca2+]i decreased significantly in the cryopreserved control group relative to the fresh control group. DPI, in contrast to PMA, improved sperm progressive motility (p ≤ 0.01), membrane integrity in fresh and cryopreserved groups and reduced the ROS amount in cryopreserved group (p ≤ 0.01). Apoptotic rate, [Ca2+]i, ATP, and MMP did not change with DPI and PMA in cryopreserved groups. We conclude that NOX5 activity in fresh sperm is low, and it increases during cryopreservation. NOX5 inhibition improves the cryopreserved sperm quality.
Collapse
Affiliation(s)
- Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Zand Blvd, 71348-45794, Shiraz, Iran
| | - Bahareh Ebrahimi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Zand Blvd, 71348-45794, Shiraz, Iran.
| | - Seyed Mostafa Shid-Moosavi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Zand Blvd, 71348-45794, Shiraz, Iran
| | - Nasrollah Erfani
- Department of Immunology and Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, 71345-1798, Shiraz, Iran
| |
Collapse
|
14
|
Aitken RJ, Baker MA. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol (Lausanne) 2020; 11:581838. [PMID: 33101214 PMCID: PMC7554587 DOI: 10.3389/fendo.2020.581838] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the high prevalence of male infertility, very little is known about its etiology. In recent years however, advances in gene sequencing technology have enabled us to identify a large number of rare single point mutations responsible for impeding all aspects of male reproduction from its embryonic origins, through the endocrine regulation of spermatogenesis to germ cell differentiation and sperm function. Such monogenic mutations aside, the most common genetic causes of male infertility are aneuploidies such as Klinefelter syndrome and Y-chromosome mutations which together account for around 20-25% of all cases of non-obstructive azoospermia. Oxidative stress has also emerged as a major cause of male fertility with at least 40% of patients exhibiting some evidence of redox attack, resulting in high levels of lipid peroxidation and oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8OHdG). The latter is highly mutagenic and may contribute to de novo mutations in our species, 75% of which are known to occur in the male germ line. An examination of 8OHdG lesions in the human sperm genome has revealed ~9,000 genomic regions vulnerable to oxidative attack in spermatozoa. While these oxidized bases are generally spread widely across the genome, a particular region on chromosome 15 appears to be a hot spot for oxidative attack. This locus maps to a genetic location which has linkages to male infertility, cancer, imprinting disorders and a variety of behavioral conditions (autism, bipolar disease, spontaneous schizophrenia) which have been linked to the age of the father at the moment of conception. We present a hypothesis whereby a number of environmental, lifestyle and clinical factors conspire to induce oxidative DNA damage in the male germ line which then triggers the formation de novo mutations which can have a major impact on the health of the offspring including their subsequent fertility.
Collapse
Affiliation(s)
- Robert John Aitken
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Robert John Aitken
| | - Mark A. Baker
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
15
|
Vatannejad A, Tavilani H, Sadeghi MR, Karimi M, Lakpour N, Amanpour S, Shabani Nashtaei M, Doosti M. Evaluation of the NOX5 protein expression and oxidative stress in sperm from asthenozoospermic men compared to normozoospermic men. J Endocrinol Invest 2019; 42:1181-1189. [PMID: 30963466 DOI: 10.1007/s40618-019-01035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE NADPH oxidase 5 (NOX5), the main isoform of NOX in spermatozoa, has been recognized as the main active generators of reactive oxygen species (ROS), including superoxide anion (O 2 -. ) and hydrogen peroxide (H2O2). ROS have been shown to play important roles in many physiological and pathological conditions in spermatozoa. The present study aims to investigate the alterations of NOX5 protein expression and oxidative stress (OS) status in asthenozoospermic men compared to normozoospermic men. METHODS Semen samples were collected from 25 asthenozoospermic men and 28 normozoospermic men. In this study, NOX5 protein expression was evaluated by Western blotting. An OS status was evaluated by measuring of ROS (O 2 -. and H2O2), DNA damage and plasma membrane integrity in spermatozoa. RESULTS The protein expression of NOX5 (p < 0.0001) was remarkably higher in asthenozoospermic men in comparison to normozoospermic men. In addition, the percentages of intracellular O 2 -. (p < 0.0001), H2O2 (p < 0.0001) in viable spermatozoa, apoptotic sperm cells with altered plasma membrane (p < 0.001) and DNA damage (p = 0.001) were significantly increased in asthenozoospermic men compared to normozoospermic men. CONCLUSIONS The present study provides evidence that the overexpression of NOX5 protein may induce excessive ROS production and oxidative stress damages to DNA and plasma membrane integrity in asthenozoospermic men.
Collapse
Affiliation(s)
- A Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - H Tavilani
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M R Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Karimi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - N Lakpour
- Reproductive Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Pathology, Faculty of Medicine, Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Amanpour
- Cancer Biology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - M Shabani Nashtaei
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences Faculty of Medicine, Tehran, Iran
| | - M Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Aparnak P, Saberivand A. Effects of curcumin on canine semen parameters and expression of NOX5 gene in cryopreserved spermatozoa. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:221-226. [PMID: 31737231 PMCID: PMC6828172 DOI: 10.30466/vrf.2019.76137.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/21/2018] [Indexed: 12/26/2022]
Abstract
Canine seminal plasma contains antioxidant enzymes to protect sperm against internally generated ROS. These enzymes are removed from seminal plasma during the process of cryopreservation. The freezing/thawing process can cause some morphological and functional changes via ice crystallization and osmolality imbalance. The present study was conducted to evaluate the effects of curcumin supplementation on sperm total count, motility, progressive motility, viability, morphology, total antioxidant capacity (TAC), DNA integrity and NOX5 gene expression of dog frozen semen. The pooled semen was allocated to fresh (Group 1) and frozen (Group 2) controls, curcumin (2.50 mM) (Group 3) and curcumin (5.00 mM), (Group 4). Sperm parameters including total sperm count, morphology, motility, progressive motility, sperm concentration and DNA integrity in addition to TAC were evaluated in fresh and frozen-thawed semen samples. Real-time RT-PCR was used to investigate NOX5 and GADPH (reference gene) genes expressions. Curcumin at 2.50 mM provided a greater protective effect on the DNA integrity compared to 5.00 mM and control groups. TAC was significantly higher in 2.50 mM group than other groups. NOX5 gene expression in curcumin 2.50 mM was higher than 5.00 mM group. In conclusion, curcumin seems to emolliate sperm parameters and to protect sperm against sperm reactive oxygen stress and increases NOX5 gene expression.
Collapse
Affiliation(s)
- Parisa Aparnak
- PhD Candidate, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Adel Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Bahadorani M, Tavalaee M, Abedpoor N, Ghaedi K, Nazem MN, Nasr-Esfahani MH. Effects of branched-chain amino acid supplementation and/or aerobic exercise on mouse sperm quality and testosterone production. Andrologia 2018; 51:e13183. [DOI: 10.1111/and.13183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/03/2023] Open
Affiliation(s)
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - Navid Abedpoor
- Department of Cellular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
- Department of Biology, Faculty of Sciences; University of Isfahan; Isfahan Iran
| | - Mohammad N. Nazem
- Department of Basic Science, School of Veterinary Medicine; Shahid Bahonar University of Kerman; Kerman Iran
| | - Mohammad H. Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
- Isfahan Fertility and Infertility Center; Isfahan Iran
| |
Collapse
|
18
|
Ghanbari H, Keshtgar S, Kazeroni M. Inhibition of the CatSper Channel and NOX5 Enzyme Activity Affects the Functions of the Progesterone-Stimulated Human Sperm. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:18-25. [PMID: 29398748 PMCID: PMC5775990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Low levels of reactive oxygen species (ROS) and calcium are necessary for sperm function. NADPH oxidase 5 (NOX5) is a membrane enzyme which produces ROS. This enzyme is dependent on calcium for its activity. We investigated the importance of NOX5 and an important calcium channel (CatSper) on sperm function. METHODS This laboratory in-vitro study was done in Shiraz, Iran, 2016. Normal semen samples (n=24) were washed and diluted to 20×106 sperm/mL. The diluted samples were divided into 8 groups, containing Ham's F-10 (control group), 2 µM of NNC (CatSper channel inhibitor), 1 µM DPI (NOX5 inhibitor), and NNC+DPI. The other 4 groups were the same as the 1st ones, except that they contained 1 µM of progesterone. Motility assessment was done by VT-Sperm 3.1. Acrosome status was monitored with acrosome-specific FITC-PSA using fluorescent microscopy. Sperm viability was assessed by Eosin Y. Statistical analysis was performed using SPSS 16 software. The comparison between the groups was done using the one-way ANOVA, followed by Tukey. A P<0.05 was considered significant. RESULTS The percentage of motile sperm, sperm velocity, and viability decreased significantly in the groups containing NNC. DPI reduced sperm progressive motility only in the progesterone-stimulated condition. Progesterone induced acrosome reaction, but this effect was inhibited by NNC and DPI. CONCLUSION CatSper had a prominent role in the motility, acrosome reaction, and viability of the human sperm. The function of NOX5 was important only in the stimulated sperm. We conclude that CatSper has a more prominent role than NOX5 activity. The functional relation between NOX5 and CatSper is not clear but is very probable.
Collapse
Affiliation(s)
- Hamideh Ghanbari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Sara Keshtgar, PhD; Department of Physiology, School of Medicine, Zand Blvd., Postal Code: 71348-45794, Shiraz, Iran Tel/Fax: +98 71 32302026
| | | |
Collapse
|
19
|
Dorostghoal M, Kazeminejad SR, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia 2017; 49. [DOI: 10.1111/and.12762] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. Dorostghoal
- Toxicology Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - S. R. Kazeminejad
- Department of Genetics; Faculty of Science; Shahid Chamran University of Ahvaz; Ahvaz Iran
| | - N. Shahbazian
- Department of Obstetrics and Gynecology; Imam Khomeini Hospital; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - M. Pourmehdi
- Department of Food Hygiene and Public Health; Faculty of Veterinary Medicine; Shahid Chamran University of Ahvaz; Ahvaz Iran
| | - A. Jabbari
- Department of Biology; Faculty of Science; Shahid Chamran University of Ahvaz; Ahvaz Iran
| |
Collapse
|
20
|
Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 2016; 28:1-10. [DOI: 10.1071/rd15325] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.
Collapse
|
21
|
Fu G, Wei Y, Wang X, Yu L. Identification of candidate causal genes and their associated pathogenic mechanisms underlying teratozoospermia based on the spermatozoa transcript profiles. Andrologia 2015; 48:576-83. [PMID: 26404029 DOI: 10.1111/and.12484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2015] [Indexed: 01/12/2023] Open
Abstract
Teratozoospermia with unclear pathomechanism is one of the common causes for failed fertilisation. This study aimed to further explore the pathological mechanism for teratozoospermia. Spermatozoal transcript profiles generated from 13 normal fertile men and eight infertile males with a consistent severe heterogeneous teratozoospermia were used. These data were pre-processed, and differentially expressed genes were screened. Besides, gene ontology and pathway enrichment analysis were performed, and then, protein-protein interaction (PPI) network was constructed, and spermatogenesis-related genes in the PPI network were extracted. As a result, 366 up-regulated and 2158 down-regulated genes were identified. Multiple gene ontology terms and pathways including cell-cell signalling and reproduction enriched by differentially expressed genes were obtained. Moreover, four clusters including cluster 1 associated with RNA catabolic process were identified from the PPI network. In addition, genes including cyclin B1, proteasome (prosome, macropain) activator subunit 4, Rac GTPase-activating protein 1 and pituitary tumour-transforming 1 were received. In conclusion, abnormal expression of cyclin B1 and Rac GTPase-activating protein 1, still proteasome (prosome, macropain) activator subunit 4 and pituitary tumour-transforming 1 would impede cell cycle progression during sperm development and maturation, which may contribute to the occurrence and development of teratozoospermia.
Collapse
Affiliation(s)
- G Fu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Y Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - X Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - L Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol 2014; 12:45. [PMID: 24884815 PMCID: PMC4049374 DOI: 10.1186/1477-7827-12-45] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/18/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Spermatozoa morphology is an important and complex characteristic of the fertilization capacity of male germ cells. Morphological abnormalities have been observed to be accompanied by reactive oxygen species (ROS) overproduction and further damage to spermatozoa, ultimately leading to infertility. Therefore, this study aimed to examine the relationship between seminal ROS production and sperm morphology in infertile teratozoospermic patients as well as in healthy men of proven and unproven fertility. METHODS Semen samples were collected from 79 patients classified as teratozoospermic and 56 healthy donors (control). Standard semen analysis was performed and spermatozoa morphology was assessed according to the WHO 2010 guidelines. Seminal ROS was measured by chemiluminescence assay. Receiver operating characteristic (ROC) curves were generated, and sensitivity, specificity, cutoff value and area under curve (AUC) were determined. RESULTS Sperm morphology was significantly poor in the Teratozoospermic Group compared with the 3 Donor Groups (P < 0.05). Significantly higher levels of ROS (RLU/sec/10⁶ sperm) were seen in the Teratozoospermic group (145.4 (41.5; 555.4) compared to the Donor Groups: All Donors (64.8 (21.1; 198.2), Proven Donors (58.8 (14.2; 79.2) and Proven Donors < 2 years (58.8 (14.2; 79.2) (P < 0.05). ROS correlated negatively with sperm concentration in the All Donor group (r = -0.354; P = 0.021) as well as in the Teratozospermic group (r -0.356; P = 0.002). Using ROC analysis, we established the cutoff values for concentration, morphology and ROS. CONCLUSIONS The incidence of teratozoospermia may be directly related to the overproduction of seminal ROS. Therefore, besides sperm concentration and motility, spermatozoa morphology should receive an equally important consideration in the overall assessment of male fertility.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Eva Tvrda
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|