1
|
Cordelli E, Ardoino L, Benassi B, Consales C, Eleuteri P, Marino C, Sciortino M, Villani P, H Brinkworth M, Chen G, P McNamee J, Wood AW, Belackova L, Verbeek J, Pacchierotti F. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. ENVIRONMENT INTERNATIONAL 2024; 185:108509. [PMID: 38492496 DOI: 10.1016/j.envint.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).
Collapse
Affiliation(s)
- Eugenia Cordelli
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Lucia Ardoino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Barbara Benassi
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Claudia Consales
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Carmela Marino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Paola Villani
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Martin H Brinkworth
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew W Wood
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia
| | - Lea Belackova
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Jos Verbeek
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Francesca Pacchierotti
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| |
Collapse
|
2
|
Ersoy N, Acikgoz B, Aksu I, Kiray A, Bagriyanik HA, Kiray M. The Effects of Prenatal and Postnatal Exposure to 50-Hz and 3 mT Electromagnetic Field on Rat Testicular Development. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010071. [PMID: 36676695 PMCID: PMC9867318 DOI: 10.3390/medicina59010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Background and objectives: It has been shown that electromagnetic fields (EMFs) have negative effects on the reproductive system. The biological effects of EMF on the male reproductive system are controversial and vary depending on the frequency and exposure time. Although a limited number of studies have focused on the structural and functional effects of EMF, the effects of prenatal and postnatal EMF exposure on testes are not clear. We aimed to investigate the effects of 50-Hz, 3-mT EMF exposure (5 days/wk, 4 h/day) during pre- and postnatal periods on testis development. Materials and Methods: Pups from three groups of Sprague-Dawley pregnant rats were used: Sham, EMF-28 (EMF-exposure applied during pregnancy and until postnatal day 28), EMF-42 (EMF-exposure applied during pregnancy and until postnatal day 42). The testis tissues and blood samples of male offspring were collected on the postnatal day 42. Results: Morphometric analyses showed a decrease in seminiferous tubule diameter as a result of testicular degeneration in the EMF-42 group. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were decreased in the EMF-42 group. Lipid peroxidation levels were increased in both EMF groups, while antioxidant levels were decreased only in the EMF-28 group. We found decreased levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF1) in the EMF-42 group, and decreased levels of the SRC homology 3 (SH3) and multiple ankyrin repeat domain (SHANK3) in the EMF-28 group in the testis tissue. Conclusions: EMF exposure during pre- and postnatal periods may cause deterioration in the structure and function of testis and decrease in growing factors that would affect testicular functions in male rat pups. In addition to the oxidative stress observed in testis, decreased SHANK3, VEGF, and IGF1 protein levels suggests that these proteins may be mediators in testis affected by EMF exposure. This study shows that EMF exposure during embryonic development and adolescence can cause apoptosis and structural changes in the testis.
Collapse
Affiliation(s)
- Nevin Ersoy
- Department of Histology&Embryology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Health Sciences Institute, Dokuz Eylul University, 35330 Izmir, Turkey
- Izmir Biomedicine and Genom Center, 35330 Izmir, Turkey
| | - Burcu Acikgoz
- Health Sciences Institute, Dokuz Eylul University, 35330 Izmir, Turkey
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Ilkay Aksu
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Amac Kiray
- Department of Anatomy, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Husnu Alper Bagriyanik
- Department of Histology&Embryology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Izmir Biomedicine and Genom Center, 35330 Izmir, Turkey
| | - Muge Kiray
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Correspondence:
| |
Collapse
|
3
|
Maluin SM, Osman K, Jaffar FHF, Ibrahim SF. Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Front Physiol 2021; 12:732420. [PMID: 34630149 PMCID: PMC8497974 DOI: 10.3389/fphys.2021.732420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to radiofrequency electromagnetic radiation (RF-EMR) from various wireless devices has increased dramatically with the advancement of technology. One of the most vulnerable organs to the RF-EMR is the testes. This is due to the fact that testicular tissues are more susceptible to oxidative stress due to a high rate of cell division and mitochondrial oxygen consumption. As a result of extensive cell proliferation, replication errors occur, resulting in DNA fragmentation in the sperm. While high oxygen consumption increases the level of oxidative phosphorylation by-products (free radicals) in the mitochondria. Furthermore, due to its inability to effectively dissipate excess heat, testes are also susceptible to thermal effects from RF-EMR exposure. As a result, people are concerned about its impact on male reproductive function. The aim of this article was to conduct a review of literature on the effects of RF-EMR emitted by wireless devices on male reproductive hormones in experimental animals and humans. According to the findings of the studies, RF-EMR emitted by mobile phones and Wi-Fi devices can cause testosterone reduction. However, the effect on gonadotrophic hormones (follicle-stimulating hormone and luteinizing hormone) is inconclusive. These findings were influenced by several factors, which can influence energy absorption and the biological effect of RF-EMR. The effect of RF-EMR in the majority of animal and human studies appeared to be related to the duration of mobile phone use. Thus, limiting the use of wireless devices is recommended.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia (USIM), Nilai, Malaysia
| | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Mahmoud NM, Gomaa RS, Salem AE. Activation of liver X receptors ameliorates alterations in testicular function in rats exposed to electromagnetic radiation. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1884333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
| | - Randa Salah Gomaa
- Medical Physiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Elsayd Salem
- Pharmacology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Gautam R, Priyadarshini E, Nirala J, Rajamani P. Impact of nonionizing electromagnetic radiation on male infertility: an assessment of the mechanism and consequences. Int J Radiat Biol 2021; 98:1063-1073. [PMID: 33264041 DOI: 10.1080/09553002.2020.1859154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Environment and lifestyle factors are being attributed toward increased instances of male infertility. Rapid technological advancement, results in emission of electromagnetic radiations of different frequency which impacts human both biologically as well as genetically. Devices like cell phone, power line and monitors emit electromagnetic radiation and are a major source of the exposure. Numerous studies describe the detrimental consequence of radiation on physiological parameters of male reproductive system including sperm parameters (morphology, motility, and viability), metabolism and genomic instability. While the thermal and nonthermal interaction of nonionizing radiations with biological tissues can't be ruled out, most studies emphasize the generation of reactive oxygen species. Oxidative stress alters redox equilibrium and disrupts morphology and normal functioning of sperms along with declination of total anti-oxidant capacity. CONCLUSION In this paper, we describe a detailed literature review with the intent of analyzing the impact of electromagnetic radiation and understand the consequence on male reproductive system. The underlying mechanism suggesting ROS generation and pathway of action has also been discussed. Additionally, the safety measures while using electronic gadgets and mobile phones has also been presented.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - JayPrakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Shokri M, Shamsaei ME, Malekshah AK, Amiri FT. The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone-induced testicular damage in an experimental mouse model. Andrologia 2020; 52:e13834. [PMID: 33040351 DOI: 10.1111/and.13834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Radiofrequency electromagnetic radiation (RF-EMR) from mobile devices has undesirable effects on the male reproductive organs. Melatonin with antioxidant potential can help to prevent these damages. Therefore, the aim of this study was to evaluate the protective effect of melatonin on testicular damage induced by RF-EMR of mobile phone. In this experimental study, 32 adult male BALB/c mice were divided randomly into four groups: control, melatonin (2 mg/kg, for 30 consecutive days, intraperitoneally), RF-EMR (900 MHz, 100 to 300 MT, 54 to 160 W/m) (4 hr per day, whole body) and melatonin + RF-EMR groups. One day after the last prescription were evaluated oxidative stress parameters, testosterone level and histopathological assays of the testis. EMR of mobile phone led to the induction of oxidative stress, testicular tissue damage and decreased testosterone. Treatment with melatonin improved oxidative stress parameters such as MDA and GSH, and testis injury score, increased the thickness of the germinal epithelial thickness and diameter of the seminiferous tubule, and decreased testosterone hormone in the EMR-exposed mice, and these differences were significant(p < .05). Data showed that melatonin with its antioxidant property can decrease oxidative damage induced by RF-EMR of mobile phones on testis tissue.
Collapse
Affiliation(s)
- Mitra Shokri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad E Shamsaei
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali K Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh T Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Yahyazadeh A, Altunkaynak BZ, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem 2020; 122:151467. [PMID: 31784235 DOI: 10.1016/j.acthis.2019.151467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Long-term use of cell phones emitting electromagnetic fields (EMFs) have raised concerns regarding public health in recent year. We aimed to investigate the possible effects of 900 MHz EMF exposure (60 min/day for 28 days) on the rat testis. Another objective was to determine whether the deleterious effect of EMF radiation would be reduced by the administration of thymoquinone (TQ) (10 mg/kg/day). Twenty-four male adult Wistar albino rats were randomly selected, then assigned into four groups as followControl, EMF, TQ and EMF + TQ. Testicular samples were analyzed using histological, stereological, biochemical and immunohistochemical techniques. Total numbers of primary spermatocytes and spermatids as well as Leydig cells were significantly decreased in the EMF group compared to the Control group (p < 0.05). In the EMF + TQ group, the total number of primary spermatocytes was significantly increased compared to the EMF group (p < 0.05). Superoxide dismutase (SOD) activity was significantly increased in the EMF group compared to the Control group (p < 0.05). Also, serum testosterone levels and wet weight of testes were significantly decreased in the EMF group compared to the Control group (p < 0.05). Our findings suggested that exposure to a 900 MHz EMF had adverse effects on rat testicular tissue and that the administration of TQ partially mitigated testicular oxidative damages caused by EMF radiation.
Collapse
|
8
|
Alkis ME, Akdag MZ, Dasdag S, Yegin K, Akpolat V. Single-strand DNA breaks and oxidative changes in rat testes exposed to radiofrequency radiation emitted from cellular phones. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1696702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Mehmet Esref Alkis
- Departmen of Occupational Health and Safety, Health School, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School, Istanbul Medeniyet University, Istanbul, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Engineering School, Ege University, Izmir, Turkey
| | - Veysi Akpolat
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
9
|
Domenech-Coca C, Mariné-Casadó R, Caimari A, Arola L, del Bas JM, Bladé C, Rodriguez-Naranjo MI. Dual liquid-liquid extraction followed by LC-MS/MS method for the simultaneous quantification of melatonin, cortisol, triiodothyronine, thyroxine and testosterone levels in serum: Applications to a photoperiod study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1108:11-16. [DOI: 10.1016/j.jchromb.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|
10
|
Yahyazadeh A, Altunkaynak BZ. Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotech Histochem 2019; 94:298-307. [PMID: 30669870 DOI: 10.1080/10520295.2019.1566568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- A. Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - B. Z. Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, Okan University, Istanbul, Turkey
| |
Collapse
|